

xLadder
Programming guide

Ver. 2.0.0.7

Document Revisions

Date
Version

Number
Document Changes

25/12/2020 2.0.0.3
Add new instructions description for Ethernet PLC (Chapter

10.12~10.16)

26/05/2021 2.0.0.4
Modify the expansion module I/O, AI, AQ address addressing

(Chapter 10.3)

01/03/2022 2.0.0.5 SMB34-SMB35 Time Interval Registers for Timed Interrupts

(Chapter 4.1)

24/03/2022 2.0.0.6 NEW Modbus Address Assignment Table (Page 304)

24/12/2024 2.0.0.7
xLadder also supports SR-12 series and adds related content. Add

some new content in Chapter 10.

Introduction --- 10

Valid range of this manual --- 10

Safety Guideline -- 10

Qualified Personnel-- 11

Prescribed Usage --- 12

Warning -- 12

Trademarks --- 12

Copyright Rievtech 2016 all rights reserved--- 12

Disclaim of Liability --- 12

Additional support -- 12

1. What is Rievtech Micro PLC? --- 13

1.1 Overview -- 13

1.2 Highlight feature -- 13

1.3 Some of the things Rievtech Micro PLC can do for you? --- 14

1.4 Rievtech devices： --- 14

Rievtech Basic is available in two voltage classes -- 14

Expansion modules --- 14

Communication cable and module -- 15

2. Hardware introduction --- 16

2.1 Naming Rules of PR Series PLC --- 16

2.2 Hardware model selection -- 18

2.3 Structure & dimension --- 1

3 .Installing/removing Rievtech Micro PLC --- 4

Dimensions -- 4

3.1 DIN rail mounting --- 5

3.2 Wall-mounting --- 6

3.3 wiring Rievtech Micro PLC -- 7

3.4 Connecting the power supply -- 7

3.4.1 Connecting Rievtech micro PLC inputs -- 8

3.4.2 Connecting Outputs --- 10

3.4.3 Communication port instructions: --- 12

4.Quick reference manual --- 17

4.1 Special memory-SM area: --- 17

4.2Interrupt Events: --- 18

4.3 High speed counter： -- 18

XLadder direction for use --- 20

5.The detailed annotation of operation interface --- 20

5.1The main menu -- 20

5.1.1 File --- 20

5.1.2 Edit -- 21

5.1.3 View --- 22

5.1.4 PLC --- 23

5.1.5 Debug --- 24

5.1.6 SMS -- 24

5.1.7 Help --- 26

5.2 Toolbar --- 27

5.3 Instruction tree -- 30

5.3.1 Project -- 31

5.3.2 Data block -- 31

5.3.3 System block -- 32

5.3.4 Program block --- 38

5.3.5 Function symbol -- 39

5.3.6 Variable symbol --- 39

5.3.7 Status chart -- 39

5.3.8 Cross reference --- 40

5.3.9 Communication --- 40

5.3.10 Instructions -- 42

5.3.11 Libraries --- 42

5.3.12 The program editor -- 43

5.3.13 Status chart, information output --- 44

5.4 Programming concepts -- 45

5.4.1 How the program works -- 45

5.4.2 Addressing overview -- 45

5.4.3 How to organize the program --- 47

5.5 How to enter the ladder logic program -- 49

5.5.1 How to build a new project -- 49

5.5.2 Ladder logic element and its working principle --- 50

5.5.3 Network rules for series and parallel in LAD --- 51

5.5.4 How to input commands in LAD -- 51

5.5.5 How to enter the address in LAD --- 53

5.5.6 How to edit program elements in LAD -- 53

5.5.7 How to use find / replace -- 55

5.5.8 How to display errors in LAD in the program editor ------------------------------------- 56

5.5.9 How to compile in LAD -- 57

5.5.10 How to save the project --- 57

5.6 How to set up a communication and download program --------------------------------------- 58

5.6.1 Communication settings -- 58

5.6.2 Download program -- 59

5.6.3 How to correct compilation errors and download errors ------------------------------- 61

5.7 How to monitor the program -- 62

5.8 PLC operation and options -- 65

6. xLadder instructions descriptions --- 67

6.1 Bit logic -- 67

6.1.1 Normally open and normally closed --- 67

6.1.2 Normally open immediate and normally closed immediate. -------------------------- 68

6.1.3 NOT Reverse instruction -- 69

6.1.4 Rising edge and falling edge --- 69

6.1.5 Output -- 70

6.1.6 Output immediate --- 71

6.1.7 Set and reset -- 71

6.1.8 Set immediate and reset immediate -- 72

6.1.9 SR instruction --- 72

6.1.10 RS instruction -- 73

6.1.11 NOP instruction --- 74

6.2 Clock instruction -- 75

6.2.1 Read and set the real time clock-- 75

6.3 Communication -- 76

6.3.1 Get port address --- 76

6.3.2 Set port address -- 76

6.4 Compare -- 77

6.4.1 Byte compare --- 78

6.4.2 Integer comparison -- 79

6.4.3 Double integer comparison -- 80

6.4.4 Real number comparison--- 81

6.4.5 String comparison -- 82

6.5 Convert -- 83

6.5.1 Byte to integer -- 83

6.5.2 Integer to byte -- 84

6.5.3 Integer to double integer --- 84

6.5.4 Integer to string -- 84

6.5.5 Double integer to integer -- 86

6.5.6 Double integer to real number -- 86

6.5.7 Double integer to string -- 87

6.5.8 BCD to integer, integer to BCD conversion --- 88

6.5.9 ROUND --- 89

6.5.10 TRUNC --- 90

6.5.11 Real number to string --- 90

6.5.12 Integer to ASCII code -- 92

6.5.13 Double integer to ASCII code -- 94

6.5.14 Real number to ASCII code --- 95

6.5.15 ATH&HTA --- 97

6.5.16 String to integer --- 98

6.5.17 String to double integer --- 100

6.5.18 String to real number -- 102

6.5.19 DECO -- 103

6.5.20 ENCO -- 104

6.5.21 Seven segment code --- 105

6.6 Counter -- 106

6.6.1 CTU -- 106

6.6.2 CTD -- 107

6.6.3 CTUD -- 107

6.7 Floating point calculation --- 108

6.7.1 ADD-R&SUB-R --- 109

6.7.2 MUL - R&DIV - R -- 110

6.7.3 SQRT--- 111

6.7.4 SIN --- 112

6.7.5 COS -- 113

6.7.6 TAN -- 113

6.7.7 LN -- 114

6.7.8 EXP --- 115

6.7.9 PID --- 116

6.8 Integer operations -- 119

6.8.1 ADD-I&SUB-I -- 119

6.8.2 ADD- DI & SUB- DI -- 120

6.8.3 MUL & DIV --- 121

6.8.4 MUL -I & DIV-I --- 122

6.8.5 MUL -DI & DIV -DI -- 124

6.8.6 INC-B & DEC-B -- 125

6.8.7 INC-W & DEC-W -- 126

6.8.8 INC -DW & DEC -DW --- 127

6.9 Interrupt--- 128

6.9.1 ENI & DISI -- 128

6.9.2 RETI instruction --- 129

6.9.3 ATCH --- 130

6.9.4 DTCH -- 133

6.9.5 Clear interrupt event -- 134

6.10 Logic operation -- 135

6.10.1 INV -B -- 135

6.10.2 INV -W -- 136

6.10.3 INV -DW--- 137

6.10.4 WAND-B、WOR -B、WXOR -B -- 138

6.10.5 WAND-W、WOR -W、WXOR -W -- 139

6.10.6 WAND- DW、WOR -DW、WXOR -DW -- 140

6.11 Move --- 141

6.11.1 Byte move -- 141

6.11.2 Word move--- 142

6.11.3 Double word move --- 143

6.11.4 Real number move --- 144

6.11.5 BLKMOV -B --- 145

6.11.6 BLKMOV -W -- 146

6.11.7 BLKMOV -D --- 147

6.11.8 SWAP -- 148

6.11.9 MOV -BIR --- 149

6.11.10 MOV -BIW -- 149

6.12 Program control-- 150

6.12.1 FOR、NEXT -- 150

6.12.2 Jump to label and label --- 152

6.12.3 Sequence control relay -- 153

6.12.4 Return from subroutine --- 155

6.12.5 Conditional end --- 156

6.12.6 STOP --- 157

6.12.7 Watchdog Reset -- 158

6.12.8 Diagnosis LED -- 159

6.13 Shift cycle-- 160

6.13.1 SHR -B & SHL -B --- 160

6.13.2 SHR -W & SHL -W --- 162

6.13.3 SHR -DW & SHL -DW --- 163

6.13.4 ROR -B & ROL -B -- 164

6.13.5 ROR -W & ROL -W -- 165

6.13.6 ROR -DW & ROL -DW -- 166

6.13.7 SHRB --- 167

6.14 Character string -- 168

6.14.1 String length --- 168

6.14.2 Copy string --- 169

6.14.3 SSTR-CPY -- 170

6.14.4 String catenate -- 171

6.14.5 STR -FIND --- 172

6.14.6 Look for the first character in the string -- 173

6.15 Table -- 174

6.15.1 Last in first out -- 174

6.15.2 FIFO -- 176

6.15.3 Add to table -- 178

6.15.4 Memory fill --- 180

6.15.5 Table Find--- 181

6.16 Timer --- 183

6.16.1 Switch on delay timer --- 183

6.16.2 TONR -- 185

6.16.3 Disconnect delay timer -- 186

6.16.4 Start time interval -- 187

6.16.5 Calculation interval time -- 188

6.17 Pulse train output --- 189

6.17.1 Pulse output --- 189

6.17.2 Pulse width modulation --- 190

6.18 Subroutine -- 191

6.18.1 Using subroutine --- 191

6.18.2 Using parameters to call subroutine --- 192

6.18.3 How to set up a subroutine -- 193

6.18.4 How to call a subroutine -- 194

7.PLC storage area -- 196

7.1 Storage area types and properties -- 196

7.2 Direct and indirect addressing --- 197

7.3 Bit, byte, word and double word access --- 200

7.4 Memory address range -- 200

7.5 Data type -- 201

7.6 Constant --- 202

8.Assignment and function of SM special storage area --- 203

9.xladder communication -- 205

9.1 PLC basic introduction of network communication --- 205

9.2 Rievtech PLC communication -- 207

9.3 Optimize network performance --- 214

10.Additional chapter --- 214

10.1 How to switch PLC mode -- 214

10.2 How to obtain the firmware version number of the PLC ------------------------------------- 221

10.3 Value range of analog quantity: -- 223

10.4 Extension module address -- 224

10.4.1 Digtal Input addressing -- 224

10.4.2 Digtal Output addressing --- 225

10.4.3 Analog Input addressing -- 227

10.4.4 Analog Output addressing -- 228

10.5 Set extension module address with a DIP switch -- 230

10.6 Set the analog sensor type for AI and AQ on xLadder -- 231

10.6.1 AI: Set to voltage, current, PT100, PT1000 mode ------------------------------------- 231

10.6.2 AQ: Set to voltage or current mode -- 232

10.7 Additional instructions --- 234

10.7.1 LCD related instructions--- 234

10.7.2 CAN, serial port initialization instructions -- 242

10.8 Example of serial port free port communication -- 244

10.9 Example of CAN free port --- 246

10.10 MODBUS communication master program -- 248

10.11 The example of using PID instruction --- 249

10.12 Read / Write Program via Ethernet -- 252

10.12.1 PR Ethernet Series -- 253

10.12.2 SR-12 Series -- 260

10.13 Modbus block (New block for Ethernet series PLC) -- 265

10.14 MQTT (New block for Ethernet series PLC) -- 268

10.14.1 Connect to MQTT Server -- 268

10.14.2 Publish with MQTT --- 271

10.14.3 Subscribe with MQTT --- 276

10.15 Memory Read & Memory Write (New block for Ethernet series PLC) ------------------- 278

10.15.1 Memory Write -- 278

10.15.2 Memory Read -- 281

10.16 GPRS_CONN & GPRS_SEND (New block for Ethernet series PLC) ------------------------ 284

10.16.1 GPRS_CONN -- 284

10.16.2 GPRS_SEND -- 285

10.17 SMS_IN & SMS_OUT (New block for Ethernet series PLC) --------------------------------- 288

10.17.1 SMS_IN --- 289

10.17.2 SMS_OUT -- 292

10.18 EMAIL_POST (New block for Ethernet series PLC) --- 295

10.18.1 Set email params --- 295

10.18.2 EMAIL_POST -- 296

10.19 Bacnet Protocol -- 298

10.20 Libraries files function -- 305

10.21 Offline simulation -- 307

10.22 C language subroutine -- 310

MODBUS ADDRESS --- 314

Introduction

Congratulations with your Rievtech Micro PLC provided by Rievtech Electronic Co., Ltd.

The Rievtech Micro PLC is a compact and expandable CPU replacing mini-PLCs, multiple timers, relays

and counters.

The Rievtech Micro PLC perfectly fits in the space between timing relays and low-end PLCs. Each CPU

incorporates not only a real-time clock and calendar, but also provides support for optional expansion

I/O modules to enhance control and monitoring applications. Data adjustments can easily be performed

via the keypad, the LCD display, or through the xLadder soft. DIN-rail and panel-mounted options are

both available, offering full flexibility to the various installation needs of your application.

The Rievtech Micro PLC is available in 110V-240V AC or 12V-24V DC versions, making it the ideal solution

for relay replacement, or simple control applications as building and parking lot lighting, managing

automatic lighting, access control, watering systems, pump control, ventilation systems, home

automation and a wide field of other applications demanding low cost to be a primary design issue.

We strongly recommended taking the time to read this manual, before putting the Rievtech Micro PLC to

work. Installation, programming and use of the unit are detailed in this manual. The feature-rich

Rievtech Micro PLC provides a for off-line operation mode, allowing full configuration and testing prior

to in-field service commissioning. In reviewing this manual you will discover many additional

advantageous product properties, it will greatly simplify and optimize the use of your Rievtech Micro

PLC.

Valid range of this manual

The manual applies to devices of PR and SR series PLC.

Safety Guideline

This manual contains notices you have to observe in order to ensure your personal safety, as well as to

prevent damage to property. The notices referring to your personal safety are highlighted in the manual

by a safety alert symbol; notices referring to property damage only have no safety alert symbol. The

notices shown below are graded according to the degree of danger.

Caution

Indicates that death or severe personal injury may result if proper precautions are

not taken

Caution

With a safety alert symbol indicates that minor personal injury can result if proper

precautions are not taken.

Caution

Without a safety alert symbol indicates that property damage can result if

proper precautions are not taken.

Attention

Indicate that an unintended result or situation can occur if the corresponding

notice is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of

danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a

warning relating to property damage.

Qualified Personnel

The device/system may only be set up and used in conjunction with this documentation. Commissioning

and operation of a device/system may only be performed by qualified personnel. Within the context of

the safety notices in this documentation qualified persons are defined as persons who are authorized to

commission, ground and label devices, systems and circuits in accordance with established safety

practices and standards. Please read the complete operating instructions before installation and

commissioning.

Rievtech does not accept any liability for possible damage to persons, buildings or machines, which

occur due to incorrect use or from not following the details.

Prescribed Usage

Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the

technical description, and only in connection with devices or components from other manufacturers

which have been approved or recommended by Rievtech. Correct, reliable operation of the product

requires proper transport, storage, positioning and assembly as well as careful operation and

maintenance.

Trademarks

All names identified by Rievtech are registered trademarks of the Rievtech. The remaining trademarks in

this publication may be trademarks whose use by third parties for their own purposes could violate the

rights of the owner.

Copyright Rievtech 2016 all rights reserved

The distribution and duplication of this document or the utilization and transmission of its contents are

not permitted without express written permission. Offenders will be liable for damages. All rights,

including rights created by patent grant or registration of a utility model or design, are reserved.

Disclaim of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and

software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency.

However, the information in this publication is reviewed regularly and any necessary corrections are

included in subsequent editions.

Additional support

We take pride in answering your question as soon as we can:

Please consult our website at www.rievtech.com for your closest point of contact or email us at

sales@rievtech.com

http://www.rievtech./
mailto:sales@xlogic-relay.com

 1. What is Rievtech Micro PLC?

1.1 Overview

Rievtech Micro PLC is a universal logic module made by Rievtech.

Rievtech Micro PLC, a compact, expandable CPU that can replace mini-PLC, multiple timers, relays and

counters, Splitting the difference between a timing relay and a low-end PLC, Each CPU has a real-time

clock and calendar, and supports optional expansion I/O modules to enhance your control and

monitoring applications. Data adjustments can be done via the on-board keypad and LCD display, or with

xLadder soft. It can be either DIN-rail or panel mounted, depending upon the needs of your application,

and it is available in 120V-240V ac as well as 12V-24V dc versions, and it is the ideal solution for relay

replacement applications, simple control applications such as building and parking lot lighting, managing

automatic lighting, access control, watering systems, pump control, or ventilation systems in factory, and

home automation and applications in which cost is a primary design issue.

1.2 Highlight feature

⚫ Multiple value display and input via keypad and LCD display.

⚫ Unique ladder diagram, improves your programming efficiency.

⚫ Standard Modbus RTU/ASCII/TCP communication protocol supported.

⚫ It’s optional for Rievtech Micro PLC to act as slave or master in certain Modbus communication

network. (Easy connect to other factory touch screen by RS232 cable, RS485 module)

⚫ Support MODBUS RTU/TCP, Bacnet, MQTT, Free protocol

⚫ Expandable up to 16 linked IO expansion modules reaching 282 I/O points in maximum

⚫ Optional RS232, RS485 connectivity

⚫ Multiple channels analog inputs available with DC 0-10V signal, PT100-PT1000 signal & 0/4… 20mA.

⚫ Default Real Time Clock (RTC)

⚫ Backup at Real Time Clock (RTC) at 25 °C:20 days

⚫ 4 channels high-speed counting

⚫ Pre-configured standard functions, e.g. on/ off-delays, pulse relay and softkey

⚫ 2 PWM channels (10KHz in maximum)

⚫ Retentive memory capability

⚫ RS232 and USB communication download cable with photo-electricity isolation

⚫ Support ladder diagram programming

⚫ Mounting via modular 35mm DIN rail or screw fixed mounting plate

⚫ On-line monitor capability (Free charge SCADA for all series)

⚫ Datalogging

⚫ Kinds of analog signals process capacity (DC 0… 10V ,0/4... 20 mA, PT100-PT1000 probe inputs and

DC 0… 10V and 0/4... 20mA outputs)

⚫ Low cost

1.3 Some of the things Rievtech Micro PLC can do for you?

The Rievtech Micro PLC provides solutions for commercial, industrial, building and

domestic applications such as lighting, pumping, ventilation, shutter operations or in switching cabinets.

The application field is widespread and these are just a few to mention.

Using the RS485 bus and Ethernet connectivity allows the user to realize various extensive (real-time)

monitoring and control applications.

Special versions without operator panel and display unit are available for series production applications

in small machine, installation and cabinet building environments to further slash cost.

1.4 Rievtech devices：

Rievtech Basic is available in two voltage classes:

*Classes 1: DC12-24V: i.e.: PR-6DC Series, SR-12DC series, PR-12DC series, PR-18DC series, PR-24DC

series, and PR-DC ethernet series.

*Classes2: AC110-240V: i.e.: PR-6AC Series, SR-12AC series, PR-12AC series, PR-18AC series, PR-24AC

series and PR-AC ethernet series.

Expansion modules:

PR-E/SR-E

* Digital expansion modules are available for operation with 12…24V DC, and 110.. .240 V AC, and are

equipped with eight inputs and eight outputs.

* Analog expansion modules are available for operation with 12…24 V DC and are equipped with 6 digital

and 4 analog inputs.

Communication cable and module:

⚫ RS232 communication cable (Model: RS232 Cable)

It is kind of universal cable with photoelectricity isolation which can be directly connected to standard

9-pin port of PC, also kind of interface module which can enable user’s program to be downloaded into

the PLC through xLadder-soft for running. It also is the connection cable between CPU and third-party

device with the RS232 port (just like HMI) in modbus communication system.

⚫ USB communication cable (Model: USB Cable).

It is kind of communication cable with photoelectricity isolation through which PC with USB port only

can be connected to the PLC, moreover, it has same features as RS232 Cable, so it is quite convenient for

user whose computer has no standard serial port.

⚫ PRO-RS485 cable (Model: PRO-RS485).

It is kind of converter cable with photoelectricity isolation to make the program port serves as RS485

port.

⚫ RS485 module（Model：PR-RS485 / SR-RS485）

RS485 expansion module, connected to the expansion port of PLC CPU. Adds one RS485 channel to PLC

CPU.

Communication / Network

Rievtech PLC offers different ways to communicate within the system.

RS485 port

The RS485 port is used for communication between the CPU and various device or equipment which

have the standard RS485 port. Communicate using Modbus RTU/ASCII protocol.

Note：PR-RS485/SR-RS485 module is required to connect the CPU to RS485 BUS.

RS232 or USB port (RS232 Cable / USB Cable needed)

If there is no network required and only one main module with some expansion modules is needed for

the application, the down- and upload of the project to and from the main module happens over the

standard RS232 or USB port. It allows system maintenance like monitoring too.

Note：PR-RS485/SR-RS485 module is required to connect the CPU to RS485 BUS.

Note

Rievtech PLC may be equipped with expansion modules of the different voltage class, but expansion

module must be supplied the correct power corresponding to its type.

 2. Hardware introduction

2.1 Naming Rules of PR Series PLC

1. Series name – PR Series or SR-Series.

2. Total number of inputs and outputs for the device.

3. Voltage Supply

a. AC

b. DC

c. AD – DC or AC 24V

4. Types of Inputs:

a. D – Digital only

b. DA – Digital and Analogue Voltage

c. DAI – Digital and Analogue Voltage and Current

d. PTDAI – PT1000, Digital and Analogue Voltage and Current

5. Type of Outputs:

a. R – Relay

b. TN – Transistor PNP

c. RT – Relay and Transistor PNP

2

PR

 7

d. RTA – Relay, Transistor PNP and Analogue Voltage and Current

6. E = Economic model –Non-expandable.

7. N = Ethernet built-in (Sometimes omitted)

8. 2G = Built-in 2G communication module

9. 4G = Built-in 4G communication module

10. WIFI = Built-in wifi communication module

11. 4GWIFI = Built-in 4G & wifi communication module

1. Series name – PR or SR.

2. Indicates Expansion module.

3. Type of input and output points

4. A number – Total number of inputs and outputs

a. AI – Analogue input only

b. AQ – Analogue output only

c. PT100 – Temperature input only PT100

5. PT100/PT1000 - Temperature input PT100 or PT1000

a. RS485 – Isolated RS485 communication

6. Voltage Supply:

a. AC

b. DC

7. Types of Inputs:

a. D – Digital only

b. DA – Digital and Analogue

c. V/I - Voltage or current

d. 16IN - 16 inputs

8. Type of Outputs:

a. R – Relay

b. TN – Transistor PNP

c. V/I - Voltage or current

d. 16DO - 16 outputs

2

PR E

2.2 Hardware model selection

Table 1 - PR-12 Series

Model Expansion Supply Inputs Outputs High Speed

Count

PWM HMI RTC

PR-12AC-R * No 110-240 VAC 8 Digital 4 Relays (10A) No No Yes Yes

PR-12DC-DA-R * No 12-24 VDC 8D (4DA 0-10V) 4 Relays (10A) 4x60kHz No Yes Yes

PR-12DC-DA-TN * No 12-24 VDC 8D (4DA 0-10V) 4 T (PNP) 4x60kHz 4x10kHz Yes Yes

*Discontinued production

Table 2 - PR-14 Series

Model Expansion Supply Inputs Outputs High Speed

Count

PWM HMI RTC

PR-14AC-R * Yes 110-240 VAC 10 Digital 4 Relays (10A) No No Yes Yes

PR-14DC-DA-R * Yes 12-24 VDC 10D(6DA 0-10V) 4 Relays (10A) 4x60kHz No Yes Yes

*Discontinued production

Table 3 - PR-18 Series

Model Expansion Supply Inputs Outputs High Speed

Count

PWM HMI RTC

PR-18AC-R Yes 110-240 VAC 12 Digital 6 Relays (10A) No No Yes Yes

PR-18DC-DA-R Yes 12-24 VDC 12D (6DA 0-10V) 6 Relays (10A) 4x60kHz No Yes Yes

PR-18DC-DA-RT * Yes 12-24 VDC 12D (6DA 0-10V) 4R + 2T (PNP) 4x60kHz 2x10kHz Yes Yes

*Discontinued production

Table 4 - PR-24 Series CPU Range – Built-In RS485 Port

Model Expansion Supply Inputs Outputs High Speed

Count

PWM HMI RTC

PR-24AC-R Yes 110-240 VAC 14 Digital 6 Relays (10A) No No Yes Yes

PR-24DC-DA-R Yes 12-24 VDC 14D (6DA 0-10V) 6 Relays (10A) 4x60kHz No Yes Yes

PR-24DC-DAI-RTA *

Yes 12-24 VDC
12D (6DA 0-10V)
+ 2A (0-20mA)

6R + 2T (PNP)
+ 1A

(0-10V/0-20m
A)

4x60kHz 2x10kHz Yes Yes

*Discontinued production

Table 5 - Ethernet Remote SR Series CPU Units

Model Expansion Supply Inputs Outputs High Speed

Count

PWM HMI RTC

SR-12AC-R Yes 110-240 VAC 8 Digital 4 Relays (10A) No No Yes Yes

SR-12DC-DA-R Yes DC12-24V
/AC24V

8D (4DA 0-10V) 4 Relays (10A) No No Yes Yes

Table 6 - Ethernet Remote PR Series CPU Units – Built-In RS485 Port and Web Server

Model Expansion Supply Inputs Outputs High Speed

Count

PWM HMI RTC

PR-12AC-R-N Yes 110-24
0 VAC

8 Digital 4 Relays (10A) No No Yes Yes

PR-12DC-DA-R-N Yes 24 VDC 8D (4DA 0-10V) 4 Relays (10A) 4x60kHz No Yes Yes

PR-18AC-R-N

(V1~V3 No Built-in

RS485)

Yes 110-24
0 VAC

12 Digital 6 Relays (10A) No No Yes Yes

PR-18DC-DAI-R-N Yes 24 VDC 12D (6DA 0-10V +
2DA(0-20mA)

6 Relays (10A) 4x60kHz No Yes Yes

PR-18DC-DAI-TN-N Yes 12-24
VDC

12D (6DA 0-10V) +
2A (0-20mA)

6T (PNP) 4x60kHz 2x10kHz Yes Yes

PR-23DC-PTDAI-RT-N * Yes 24 VDC 3xPT100 + 10D
(2DA 0-10V + 4DA
0-10V or 0-20mA)

10R + 2T(PNP) 4x60kHz 2x10kHz Yes Yes

PR-23DC-PTDAI-RT-4G * Yes 24 VDC 3xPT100 + 10D
(2DA 0-10V + 4DA
0-10V or 0-20mA)

10R + 2T(PNP) 4x60kHz 2x10kHz Yes Yes

PR-26AC-R-N Yes 110-24
0 VAC

16 Digital 10 Relays (10/5A) No No Yes Yes

PR-26DC-DAI-RA-N Yes 24 VDC 16D (8DA 0-10V +
4DA 0-20mA)

8R + 2A (1 x 0-10V
+ 1 x 0-20mA)

4x60kHz No Yes Yes

PR-26DC-DAI-RT-N Yes 24 VDC 16D (8DA 0-10V +
4DA 0-20mA)

8R + 2T (PNP) 4x60kHz 2x10kHz Yes Yes

PR-26DC-DAI-RT-2G Yes 24 VDC 16D (8DA 0-10V +
4DA 0-20mA)

8R + 2T (PNP) 4x60kHz 2x10kHz Yes Yes

PR-26DC-DAI-RT-4G Yes 24 VDC 16D (8DA 0-10V +
4DA 0-20mA)

8R + 2T (PNP) 4x60kHz 2x10kHz Yes Yes

PR-26DC-DAI-RT-WIFI Yes 24 VDC 16D (8DA 0-10V +
4DA 0-20mA)

8R + 2T (PNP) 4x60kHz 2x10kHz Yes Yes

PR-26DC-DA-RT-4GWIFI Yes 24 VDC 16D (8DA 0-10V +
4DA 0-20mA)

8R + 2T (PNP) 4x60kHz 2x10kHz Yes Yes

*Discontinued production

Table 7 - Expansion Modules for PR-14, PR-18, PR-24, PR-26 and Remote PLC CPUs (Max. 16 Units)

Model Supply Inputs Outputs

PR-E-16AC-R 110-240 VAC 8 Digital 4 Relays (10A) + 4 Relays (3A)

PR-E-16DC-DA-R 12-24 VDC 8Digital (4DA 0-10V) 4 Relays (10A) + 4 Relays (3A)

PR-E-16DC-DA-TN 12-24 VDC 8Digital (4DA 0-10V) 8 Transistor (0.3A)

PR-E-DC-16IN 12-24 VDC 16Digital (4DA 0-10V) -

PR-E-DC-16DO 12-24 VDC - 15 Relays (3A) + 1 Relays (10A)

PR-E-AI-I ** 12-24 VDC 4x0/4-20mA -

PR-E-PT100 ** 12-24 VDC 3 x Thermistor PT100 -

PR-E-PT100/PT1000 12-24 VDC 4 x Thermistor PT100/PT1000 -

PR-E-AQ-VI ** 12-24 VDC - 2 x 0-10 V/0-20 mA

PR-E-AI-V/I 12-24 VDC 4 x 0-10 V/0-20 mA(14bit) -

PR-RS485 12-24 VDC Additional Isolated RS485 Port

PR-E-4AI-V/I * 12-24 VDC 4 x 0/4-20mA -

PR-E-2AQ-V/I * 12-24 VDC - 2 x 0-10 V / 0-20 mA

*Adopts the SR-E series housing, which is smaller in size.

** Discontinued production

Table 8 - Expansion Modules for SR PLC CPUs (Max. 3 Units for SR-12)

Model Supply Inputs Outputs

SR-E-8AC-R 110-240 VAC 4 Digital 2 Relays (10A) + 2 Relays (3A)

SR-E-8DC-DA-R 12-24 VDC 4Digital (4DA 0-10V) 2 Relays (10A) + 2 Relays (3A)

SR-E-1AQ-VI 12-24 VDC - 1 x 0-10 V/0-20 mA

SR-E-2AI-VI 12-24 VDC 2 x 0-10 V/0-20 mA -

SR-E-2PT00 12-24 VDC 2 x Thermistor PT100 -

SR-RS485 12-24 VDC Additional Isolated RS485 Port

Table 1 - Rievtech Accessories

Model Description

RS232 Cable RS232 Programming and communication lead between CPU and PC

USB Cable USB Programming lead between CPU and PC. Needed for firmware updates.

ELC-COPIER A device used to copy a program from one CPU to another same model CPU

ELC-MEMORY Real-time data logging module, which can log IO and program data with time and date stamp

PRO-RS485 Optically isolated RS232 to RS485 converter cable

ELC-BATTERY A standard number of days for RTC retentivity is 20-days. This unit extends that to 1-year.

PR-FLAT Expansion PR-E Ribbon Cable 1-metre

 1

2.3 Structure & dimension

1. PR-12 series with LCD:

2. PR-14 and PR-18 Series

3. PR-18(V2) Series

4. PR-24 Series

 2

5. PR-24(V2) Series

6. PR-12N, 18N Series

7. PR-12N, 18N(V4) Series

 3

8. PR-26 Series

9. PR-26(V4) Series

10. SR-12 Series

11. PR-E Expansion Modules

 4

12. SR-E Expansion Modules

3 .Installing/removing Rievtech Micro PLC

Dimensions

The dimensions of the Rievtech Rievtech hardware is compliant with DIN 43880.

Rievtech can be “snap-mounted” to 35mm (EN 50022) DIN rail or wall mounted.

Rievtech Micro PLC width:

Model Width (mm)

PR-12 CPU 72

PR-14 CPU 95

PR-12N CPU 95

PR-18 CPU 95

PR-18N CPU 95

ELC-22 CPU 133

PR-24 CPU 133

PR-26 CPU 133

 5

SR-12 CPU 72

PR-E Expansion module 72

SR-E Expansion module 40

W a r n i n g

Always switch off power before you “remove” and “insert” an expansion module.

3.1 DIN rail mounting

Mounting

How to mount a Rievtech module and an expansion module onto a DIN rail:

1. Hook the Rievtech Basic module onto the rail.

2. Push down the lower end to snap it on. The mounting interlock at the rear must

engage.

3. Hook the Rievtech expansion module onto the rail

4. Slide the module towards the left until it touches the Rievtech CPU.

5. Push down the lower end to snap it on. The mounting interlock at the rear must

engage.

6. Remove the plastic cover in the expansion port of CPU and expansion module.

7. Plus the connector on the flat cable to CPU

Repeat the expansion module steps to mount further expansion modules.

Note: If you need install the expansion and CPU on different rows, you need order

the longer flat connection which is used to connected with CPU, the longest distance

can be 200meters between the CPU and the end expansion module.

Removal

To remove Rievtech Micro PLC:

 6

if you have installed only one Rievtech Basic:

1.Insert a screwdriver into the eyelet at the bottom of the slide interlock and move

the latch downward.

2. Swing the Rievtech Basic off the DIN rail.

if you have connected at least one expansion module to Rievtech Basic:

1. Remove the connector on the flat cable

2. Slide the expansion module off towards the right.

3. Insert a screwdriver into the eyelet at the bottom of the slide interlock and lever it

downward.

4. Swing the expansion module off the profile rail.

Repeat steps 1 to 4 for all other expansion modules.

3.2 Wall-mounting

For wall-mounting, first slide the mounting slides on the rear side of the devices

towards the outside. You can now wall-mount Rievtech Micro PLC by means of two

mounting slides and two ØM4 screws (tightening torque 0.8 to 1.2 Nm).

Drilling template for wall-mounting

Before you can wall-mount Rievtech Micro PLC, you need to drill holes using the

template shown below.

 7

All dimensions in mm

Bore hole for Ø M4 screw, tightening torque 0.8 to 1.2 Nm

3.3 wiring Rievtech Micro PLC

Wire the Rievtech Micro PLC by using a screwdriver with a 3-mm blade.

You do not need wire ferrules for the terminals. You can use conductors with

cross-sections of up to the following thicknesses:

 1 x 2.5 mm2

 2 x 1.5 mm2 for each second terminal chamber

Tightening torque: 0.4.. .0.5 N/m or 3. ..4 lbs/in

Note

Always cover the terminals after you have completed the installation. To protect

Rievtech Micro PLC adequately from impermissible contact to live parts, local

standards must be complied with.

3.4 Connecting the power supply

The SR-12AC, PR-12AC, PR-18AC, PR-24AC, PR-12AC-N, PR-18AC-N, PR-26AC versions

of Rievtech Micro PLC are suitable for operation with rated voltages of 110 V AC and

240 V AC. The SR-12DC, PR-12DC, PR-18DC, PR-24DC, PR-12DC-N, PR-18DC-N,

PR-26DC versions can be operated with a 12 or 24 VDC power supply.

Note

A power failure may cause an additional edge triggering signal.

Data of the last uninterrupted cycle are stored in Rievtech

Micro PLC

 8

The power supply:

3.4.1 Connecting Rievtech micro PLC inputs

1.Requirements

Inputs can be connected to various sensor elements such as momentary

switches, switches, light barriers, daylight control switches, etc.

Signal state AC Type DC Type

OFF/0

Input Current

< 40 VAC

Typical 0.05 mA

< 5 VDC

Typical 1 mA

ON/1

Input Current

> 79 VAC

Typical 0.1 mA

> 8 VDC

Typical 1.7 mA

Analogue Input NOT APPLICABLE 0 to 10 VDC

2. Connecting Rievtech is shown as in the following figures:

(1) DC Type Digital Input Connections

(2) AC Type Digital Input Connections

(3) Analogue Input Connections (0 to 10 VDC)

D
C

2
 2

V

L M I I2 I I

A
C

0
 2

0
V

L N I I2 I I

 9

(4) Analogue Input Connections (0 to 20 mA)

NOTICE:

For (0~20mA /0~10V DC) input, the sensor type needs to be set during programming. For

example, ID~IG of PR-26DC. Refer to the following figure:

(5) Analogue Input Connections (PT100/PT1000)

Either 2 or 3-wire PT100 / 2-wire PT1000 sensors can be connected.

With a 2-wire sensor, connect to terminals M1+ and M1-. Short between M1+ and

IC1. There is no compensation for any impedance in the wire. A measurement error

of 1 Ω is equivalent to +2.5 °C.

Using a 3-wire sensor can inhibit any influence caused by cable length.

D
C

2
 2

V

0 20mA
Device

0 20mA
Device

 out

L M i i

or

 10

NOTICE:

For (PT100 /PT1000) input, the sensor type needs to be set during programming.

3.4.2 Connecting Outputs

1. Requirement for the relay output

Various loads such as a lamp, fluorescent tube, motor, contactor, etc., can be

connected to the relay outputs of the Rievtech hardware. The maximum output

current that can be handled by the relay is 10A for the resistance load and 3A for an

inductive load. The relay output connection should be wired as per the following

figure:

L M M ic m

DC 2 2 V
I NPUT 2 PT 00

M2 ic2 m2

 Wire PT 00 2 Wire PT 00

D
C

2
 2

V

Resolution 0. C

L

 2 2

Q2Q

N

 2 2

 11

2. Requirement for the transistor output:

The load connected to a transistor output must have the following

characteristics:

* The maximum switching current cannot exceed 0.3A.

* When the switch is ON (Q=1), the maximum current is 0.3A.

NOTICE:

* The load connecting voltage must be ≤30 VDC and it must be DC.

* The “+” terminal of the output wiring must be connected to the DC positive voltage,

and it must be connected with the “L+” terminal of the CPU power terminal. The

load must be connected with the “-ve” terminal of the DC negative voltage supply.

3. Requirement for the Analogue output:

0~10V: R ≥ 650Ω / 0~20mA: R ≤ 500Ω

NOTICE:

Set the output signal (voltage/current) of AQ1, AQ2 on the programming software.

Menu Path: ‘Tools – Transfer – Set AQ Parameter’

D
C

2
 2

V

DC 0V

L

Q M

0. A

Q M

M

 12

PR-RS485/SR-RS485

The RS485 expansions are just converters with photo isolation providing 3-sets of

wiring terminals (although there are 3-sets of terminals, they are connected within

the unit, so only one channel RS485 is available) of expansion port of PLC CPU for

easy connection with other devices.

If “RT1”, RT2” terminals are short connected, one 120R resistor will be connected

between A/+ and B/- providing a termination resistor for end-of-line purposes.

3.4.3 Communication port instructions:

PR-12 CPUs

 13

PR-14, PR-18 CPUs

ELC-22, PR-24 CPUs

PR-12N, PR-18N CPUs

PR26 CPUs

 14

SR-12 CPUs

NEW PR-18(V2), PR-12N(V4), PR-18N(V4) CPUs

NEW PR-24(V2), PR-26(V4) CPUs

The programming port/RS232 port can be used with any of the following

Rievtech devices. RS232 Cable, USB Cable, ELC-Copier, ELC-MEMORY,

ELC-BATTERY, and PRO-RS485. This is COM 0.

When the programming port is being used as the standard RS232 port

(D-shape 9 pin header). The RS232 Cable is needed. Below shows you the

 15

pinouts for the device:

RS232 Pinouts

RS485 Pinouts

3------RS485 A 7------CANL

5------RS485 B 9------CANH

4------GND 15------+5V

6------GND 16------+5V

Communication between CPU and expansion module will use pins 4, 7, 9 and 15.

PR-RS485/SR-RS485 module is required when either the PR-14/ PR-18/ PR-24/

PR12N/ PR-18N/ PR-26 CPUS are required to communicate with a third-party device

via RS485. Note the PR-24/ PR12N/ PR-18N/ PR-26 have built-in RS485.

COM port diagram:

PIN Function

2 RXD

3 TXD

5 GND

others NULL

 16

 17

4.Quick reference manual

4.1 Special memory-SM area:

SMB0

Always_On SM0.0 Always ON

First_Scan_On SM0.1 ON for the first scan cycle only

SMB1

Result_0 SM1.0
Set to 1 by the execution of certain instructions when the

operation result = 0

Overflow_Illegal SM1.1
Set to 1 by exec. of certain instructions on overflow or illegal

numeric value.

Neg_Result SM1.2 Set to 1 when a math operation produces a negative result

Divide_By_0 SM1.3 Set to 1 when an attempt is made to divide by zero

Table_Overflow SM1.4
Set to 1 when the Add to Table instruction attempts to overfill

the table

Table_Empty SM1.5
Set to 1 when a LIFO or FIFO instruction attempts to read

from an empty table

Not_BCD SM1.6
Set to 1 when an attempt is made to convert a non-BCD value

to a binary value

Not_Hex SM1.7
Set to 1 when an ASCII value cannot be converted to a valid

hexadecimal value

SMB34-SMB35 Time Interval Registers for Timed Interrupts

Time_0_Intrvl SMB34
Timed Interrupt 0: Time interval value (in 1 ms increments

from 1 ms to 255 ms).

Time_1_Intrvl SMB35
Timed Interrupt 1: Time interval value (in 1 ms increments

from 1 ms to 255 ms).

Newly added special registers and their functions

SMB10 Adjust the contrast of LCD display. (value range: 0~25)

SMB192 Control the LCD backlight on or off. (0: off, 1: always on)

SMB12

SMB13

Used to indicate the connection status of the expansion module.

SM12.0 - SM12.7: The status of the bit corresponds to the connection

status of the expansion modules with station address 1 to 8.

 18

SM13.0 - SM13.7: The status of the bit corresponds to the connection

status of the expansion modules with station address 9 to 16.

‘0’ means the expansion is not connected/communicating with the CPU,

‘1’ means the expansion is connected/communicating with the CPU

normally.

SMB14

Working status of built-in SD:

0: There are no errors.

1: Failed to open file.

2: Update file new content error, write failure.

3：Exceeds the maximum allowed file size

4：Insufficient memory, write failed

60：No SD card detected

* Note that the functions in this table have requirements on the PLC firmware

version.

4.2Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

4.3 High speed counter：

Correspondence between HC and input

Model HC0 HC1 HC2 HC3

PR-12DC-DA-R I5 I6 I7 I8

PR-12DC-DA-TN I5 I6 I7 I8

PR-14DC-DA-R I7 I8 I9 IA

PR-18DC-DA-R I9 IA IB IC

 19

PR-18DC-DA-RT I9 IA IB IC

PR-24DC-DA-R I9 IA IB IC

PR-24DC-DAI-RTA I9 IA IB IC

PR-12DC-DA-R-N I5 I6 I7 I8

PR-18DC-DAI-R-N I9 IA IB IC

PR-18DC-DAI-TN-N I9 IA IB IC

PR-23DC-PTDAI-RT-N I9 IA IB IC

PR-23DC-PTDAI-RT-4G I9 IA IB IC

PR-26DC-DAI-RA-N I9 IA IB IC

PR-26DC-DAI-RT-N I9 IA IB IC

PR-26DC-DAI-RT-4G I9 IA IB IC

PR-26DC-DAI-RT-WIFI I9 IA IB IC

PR-26DC-DA-RT-4GWIFI I9 IA IB IC

The value in HC can be directly read to obtain the high-speed counting value.

Each high-speed counter occupies an input point for receiving the pulse. No reset,

adjust the direction, start and other functions. The high-speed counter can only be

used for recording number in the PLC.

 20

XLadder direction for use

5.The detailed annotation of operation interface

5.1The main menu

5.1.1 File

New：New command is used to create a new project, you can use the shortcut CTRL +

N to create a new project.

Open: Open an existing project, VCW format files, which can be opened by the

shortcut CTRL + O.

Compare to File: Compare the currently editable program opened by xLadder with

the program saved in the PC path.

Compare to PLC: Compare the currently editable program opened by xLadder with

the program currently running in the PLC.

Save: Save the current edit program, you can use the shortcut CTRL + S to save.

Save as: You can save the project and you can save the project with other names

which have been saved.

Upload: Read the program from the PLC, ensure that communication is normal.

Program is read to a new project, can be saved and named. You can use the shortcut

CTRL + U to read.

Download: Write program to the PLC, Compiler success and then click the download

or use the shortcut CTRL + D to download the program.

 21

Exit: Close the XLadder software.

5.1.2 Edit

Undo: Returns to the last operation, you can send multiple “undo” command. If you

send out "open" and "off" or "save" or "compile" command, "undo" buffer is cleared.

Your next action is recorded as the beginning of a new "undo" order. Can use the

shortcut CTRL + Z to undo operation.

Redo: Contrary to the function of the undo.

Cut: Select an object, cut it, and place it in the WINDOWS clipboard buffer.

Copy: Select the object, copy the operation, and the copy of the object is placed in

the WINDOWS clipboard buffer.

Paste: Stick the cut or copied object in the selected area.

Select all: Select all the text of the current cursor position, you can use the shortcut

key CTRL+A.

Find and replace: Is used to perform the "find", "replace" and "go" operation on the

program, local variable table, data block, symbol table or state table, and can use the

shortcut key CTRL+F.

 22

5.1.3 View

STL: Display the program to STL instruction.

LAD: Display the program to LAD instruction.

Component: Components include data blocks, system blocks, program editing,

function symbols, variable symbols, cross reference and communication settings, will

be detailed description of the function of the module in the instruction tree.

Symbolic addressing: After the start symbol editing function, it will display the

symbol of the annotation.

Toolbar: The toolbar of the contents are as follows

You can choose to use the tools, the default is full.

Floating window: Window that can be moved in the operating interface. Its contents

are as follows:

 23

Status table, project management, information output and debugging information

window can be moved.

5.1.4 PLC

RUN: Make RUN in PLC mode, running the program in PLC, if you use the software to open RUN

mode, you need to ensure the normal communication between software and PLC.

Stop: Make STOP in PLC mode, to stop the program in the PLC. If you use the software to make

STOP into the PLC mode, you need to ensure the normal communication between software and

PLC.

Compile: Compile the program of the current page.

Compile all: Compile all project components (program block, data block and system block).

Clear: Clear all the data in the PLC, only offline can clear the data from the PLC.

Information: The information view of PLC, we can only see in the connection state.

Clear: Clear all the PLC variable.

Information: After clicking the ‘Connect’ button in the toolbar, this menu is valid when xLadder is

 24

in online monitoring state. Read the firmware version and operating status information of the

PLC.

Config: xLadder communicates with PLC, reads or writes some information: Read PLC' Date and

Time, Write PLC' Date and Time, Web Server Config, WIFI Config, Set AQ Parameter.

Type: Can choose the type of PLC.

5.1.5 Debug

Connect: Display PLC data status in the program editor window.

Disconnect: No longer monitor the current value of the PLC data. In offline state does

not represent the state of STOP in PLC, if you want to make STOP in PLC state, you

can modify the state of PLC in the connection state, in offline state can’t be modified.

5.1.6 SMS

General Settings

 25

Set Modbus Config

Set GPRS Params

 26

Initialize the gsm module

Set email params

5.1.7 Help

About: the information of the software. The version number of xLadder can be found

 27

here.

Choose Language: Can choose Chinese, English or Russian

Call help file: Can call help file.

5.2 Toolbar

New: New command is used to create a new project; you can use the shortcut CTRL +

N to create a new project.

Open: Open an existing project, VCW format files, which can be opened by the shortcut CTRL +

O.

Save: Save the current edit program, you can use the shortcut CTRL + S to save.

Undo: Returns to the last operation, you can send multiple “undo” command. If you

send out "open" and "off" or "save" or "compile" command, "undo" buffer is cleared.

Your next action is recorded as the beginning of a new "undo" order. Can use the

shortcut CTRL + Z to undo operation.

Redo: Contrary to the function of the undo.

Cut: Select an object, cut it, and place it in the WINDOWS clipboard buffer.

Copy: Select the object, copy the operation, and the copy of the object is placed in

the WINDOWS clipboard buffer.

Paste: Stick the cut or copied object in the selected area.

Symbolic addressing: After the start symbol editing function, it will display the

symbol of the annotation.

Compile: Compile the program of the current page.

Compile all: Compile all project components (program block, data block and system

block).

Upload: Read the program from the PLC, ensure that communication is normal.

Program is read to a new project, can be saved and named. You can use the shortcut

CTRL + U to read.

 28

Download: Write program to the PLC, Compiler success and then click the download

or use the shortcut CTRL + D to download the program.

Network Search: Search for the PR Ethernet PLC in the same LAN as the PC. This tool

can be used to configure the Ethernet parameters of the Ethernet PLC.

FBD Blocks: Function is under development.

Simulate: Offline simulation function of xLadder.

Connect: Display PLC data status in the program editor window.

Disconnect: No longer monitor the current value of the PLC data. In offline state does

not represent the state of STOP in PLC, if you want to make STOP in PLC state, you

can modify the state of PLC in the connection state, in offline state can not be

modified.

Run: Run instructions in the main menu.

Stop: Stop instructions in the main menu

Erase: Select the instruction that has been written, click erase, delete instruction.

Select: When the selection is lit, it indicates that the current location area can be

selected, copied, cut and pasted. Selection is gray, the current location of the

selected operation can not be carried out.

Vert Line: Place a vertical connecting line.

Horz Line: Place a horizontal connecting line.

Horz Contact: Place a contact. After selecting this tool, click on a blank area in the

program editing area to pop up all contacts for selection.

Horz Coil: Place a coil. After selecting this tool, click in a blank area of the program

editing area to pop up all coils for selection.

Horz Block: Place a function block. After selecting this tool, click in a blank area of

the program editing area to pop up all function blocks for selection.

Normally open contacts: Click to select the normally open contact, in the program

editing area will appear normally open contact which is undefined, you can click the

mark to enter the address.

Normally closed contacts: Click to select the normally closed contact, in the program

editing area will appear normally closed contact which is undefined, you can click the

 29

mark to enter the address.

Rising edge contact: Click to select the rising edge of the contact, enable input will

lead to a scan cycle.

Falling edge contact: Click to select the falling edge contact, when the enable input is

disconnected, it will lead to a scan cycle.

Output coil: The output coil must be at the end of each line. Write the new value of

the output bit to the output image register.

Function block: Click the function block, the interface is as follows.

Enter the required function block instruction in the dialog box, letters are capital.

Horz Line: Place a horizontal connector line at the location selected by the mouse.

Vert Line: Place a vertical connecting line at the mouse selected location.

Invert Line: Place a horizontal connecting line with the NOT function at the location

selected by the mouse.

 30

5.3 Instruction tree

 31

5.3.1 Project

The PLC model selected by the current program is displayed here. Double-click the PLC model

here to pop up the ‘PLC Type’ window.

5.3.2 Data block

Data blocks contain DAT-0 and DAT-1, you can right-click to insert new data blocks for

programmers to use. The contents of the data block are as follows:

In the data block, you can set the address, data type, data value, and annotation. The contents of

the data blocks are written to PLC after a permanent save, unless a new program is written in PLC.

The content in the block of data is written to the PLC and it will be permanently preserved, unless

a new program is written in PLC.

 32

5.3.3 System block

Double click the system block, pop the following interface:

RS232 / RS485 interface: All ports are using MODBUS communication protocol. You

can set four ports, they are: COM 0, COM 1, COM 2 and COM 3.

COM0 corresponds to the programming port. COM1 corresponds to the RS485 port

of PR-RS485/SR-RS485. COM2 and COM3 correspond to the PLC's built-in RS485 port.

You can set the station number, baud rate, data bit, stop bit, parity, timeout and

frame interval time.

 33

Password interface:

Password has 3 levels.

Level 1-Full: All PLC functions are available without restriction.

Level 2-Minium: You have to enter a password before using each function of PLC.

Level 3-Disallow Upload: You can't upload the PLC program. Then you have to enter a

password before using each function of PLC.

The length of the password is 1 to 16 bits.

If you forget the password in the PLC, you can switch the PLC to FBD mode (for PR

Ethernet series PLCs, use Rievtech to download an FBD program). Then switch back

to ladder mode and re-download a new xLadder program.

 34

Retentive Ranges interface

By default, all M, T, V, and C storage areas are set to remain. You can redefine the

scope and set some storage areas to non - hold. You can define the six holding range,

select the storage area you want to keep. You can define the address holding range in

the following storage areas. As the following: V, M, C, and T. For timers, only the

memory timer (TONR) can be kept, and only the current value of the timer and the

counter can be kept. Timer and counter bits are cleared

All the variables in the retentive ranges are saved permanently. PLC can hold up to

800 bytes.

 35

Interrupt time parameter setting interface:

There are 2 time-interrupt events. Respectively, the time of the interrupt event 1 and

the time of the interrupt event 0. The interrupt time you can set is 1 to 255

milliseconds.

 36

Force table interface:

When PLC is converted from RUN mode to STOP mode, the selected output points

will be 1.

 37

AI Parameters:

CPU module:

PR-18N (I7 -- I8), PR-26N (ID -- IG)

Expansion module:

PR-E-AI-V/I (AI1 – AI4)

PR-E-PT100/PT1000

SR-E-AI-VI

Set the analog channel working mode (voltage or current, PT100 or PT1000) on the

software. After setting, you need to download the program to the PLC for the setting

to take effect.

 38

Bacnet Parameters:

The PR Ethernet series supports the Bacnet protocol and has requirements for the

firmware version number. For specific usage, refer to Chapter Bacnet protocol

function.

5.3.4 Program block

The program block contains three parts, namely, MAIN (main program), INT-1

(interrupt routine) and SBR-0 (subroutine). Check the interrupt program, right click to

add or delete interrupt program. Check the subroutine, right click to add or delete

subroutine. The main program can’t be added or deleted.

 39

5.3.5 Function symbol

Double click the function symbol, the pop-up interface is as follows:

You can modify the symbols, addresses, and comments.

5.3.6 Variable symbol

Double click the variable symbol, the pop-up interface is as follows:

Symbol, address, data type, and comment can be set in variable symbol.

When the address and data types do not match, the address is red.

5.3.7 Status chart

Double click the status chart, the pop-up interface is as follows:

 40

In the status chart, you can set the address, data type, value, and forced.

5.3.8 Cross reference

The cross reference displays the address, symbol, location, and context, the interface

is as follows:

Using cross reference does not require compilation.

5.3.9 Communication

Set the PLC communication, the setting interface is as follows:

 41

xLadder can be connected to PLC via serial port and Ethernet.

Serial Port: Select the COM port on the PC that RS232 Cable, USB Cable or RS485 is

used for. Then set the same communication parameters as the PLC side: baud rate,

checksum, stop bit, station number.

Modbus TCP/IP: xLadder is used as client. Fill in the PLC IP and server port here. If

the PC has multiple network cards or network segments, you need to select the

network adapter that is in the same network segment as the PLC IP.

And fill in the PLC station number.

If you don't remember the PLC station number, you can use 0.

The new version of xLadder can save the last set communication parameters and use

 42

them directly the next time you open it.

5.3.10 Instructions

Instructions will be explained in detail in the instructions section.

5.3.11 Libraries

The new version of xLadder supports exporting subroutines as library files, and

supports importing saved library files into xLadder.

For details, refer to Chapter library file function.

 43

5.3.12 The program editor

Local Variable table: MAIN, each INT and SBR subroutine has its own local variable

table. You can define local variables here. Local variables can be used to pass

parameters to subroutines, which enhances the portability and reusability of

subroutines. The scope of a local variable is only within this subroutine.

Program editing area: In the program editing area, the main program, interrupt

program and subroutine can be edited.

 44

5.3.13 Status chart, information output

Status Chart: 5.3.7 chapter.

Information Output: Displays information about the compiled program. The output

information window keeps a list of errors generated during compilation. When

program modification is completed, compile the program again.

PLC Simulator: During offline simulation, a picture of the PLC is displayed here. The

buttons on the LCD panel in the picture are available, the input can be used to

control and indicate the current state, and the output can be used to indicate the

state change of the output. For detailed information, please refer to Chapter Offline

simulation.

 45

5.4 Programming concepts

5.4.1 How the program works

The program is run by the loop, PLC reads and writes data continuously. When you

download the program to PLC and make PLC in the run mode, the PLC' s central

processing unit (CPU) executes the program in the following order:

A: PLC read input status.

B: The PLC program uses input values for logic control.

C: When the program is running and writes the results to the output image register.

D: At the end of the program, the output value of the output image register.

E: repeat the above steps.

PLC performs a series of tasks repeatedly. The cycle execution task is called the scan

cycle. PLC performs most or all of the following tasks during the scan cycle:

A: PLC read input status.

B: PLC executes the program's instructions, and stores the data in different memory

areas.

C: performs all communication requests.

D: PLC performs CPU self-test diagnostic program. PLC ensure that the hardware,

program memory and all expansion modules are normal operation.

E: The values stored in the output image register are written to the actual output.

Attention:

(1) The execution of the scan cycle depends on the PLC that is set in the STOP (stop)

mode or the RUN (run) mode. In the RUN (run) mode, the program is executed; in

the STOP (stop) mode, the program is not executed.

(2) The execution cycle time of the PLC is related to the size of the program. When

the program is large, the running cycle will be longer.

5.4.2 Addressing overview

Identifying absolute and symbolic address

You can use absolute or symbol to identify the instructions in the program. Absolute

reference use memory area and bit or byte location to identify the address. Symbolic

 46

reference uses letters, numbers, and characters to identify addresses or values.

How to display the address of the program editor:

I0.0

The absolute address is made up of the memory area and the number of addresses.

#INPUT1

symbols in a local variable before

INPUT1

Global symbol name

??.? or ????

A question mark indicates an undefined address (which must be defined before the

program is compiled).

Global scope and local scope

The symbol value in the symbol table has a global scope, and the symbol value in the

local variable table has a local scope.

Global symbol

Global symbols can be used in the xLadder program editor.

In the xLadder program, you can use the global variable table to assign the global

symbol.

local variable

Local variables can be used in the xLadder program editor.

Local variables are assigned in the local variable table of the respective POU, and the

scope is limited to the POU of the local variable. Each POU has a separate local

variable table.

Attention: If you use the same address name in the local and global variables table,

local variables are preferred.

Local variables use temporary L memory, and do not require the PLC program

memory space. The subroutines that use only the local variable parameters (or don't

use the parameters) are mobile subroutines. They can be used in more than one

 47

program. If you want to use a parameter in a plurality of POU, it is best to define it as

a global symbol in the global variable table, and do not define it as a local variable, or

you must assign each POU 's local variable table separately. Because local variables

use temporary memory, every time POU is called, be sure to initialize local variables

in POU. Global symbol table supports global symbol constant. Local variable table

does not support symbolic constants.

5.4.3 How to organize the program

Basic elements of a control program

The program consists of the following program types:

MAIN program

The main body of the program is where you place the control application instructions.

The instructions in the main program are executed in sequence, and each scan cycle

is executed once.

Subroutine

Subroutine stored in a separate block, when the main program, interrupt routine or

another subroutine call subroutine, the subroutine will be executed.

 48

Interrupt routine

The interrupt routine is stored in a separate block, which is executed only when the

interrupt event occurs.

How to terminate POU

The compiler uses unconditional END, MEND, RET, or RETI to terminate each POU. If

you put the unconditional END, MEND, RET, or RETI into the program, the compiler

will return an error message.

Subroutine

Subroutine is particularly useful when you want to perform a function repeatedly.

You just need to write a logic in the subroutine, then you can call the subroutine

 49

every time when you need it in the main program.

Advantages:

1. Your program size becomes smaller.

2. Because you remove the code from the main program, the scan time will be

reduced.

Subroutine can be scanned only when it is called. The main program is constantly

scanned.

3. Subroutine is easy to be moved；You can select a function and copy it to another

program. You don't need or need a little repetitive operation.

Attention: V memory usage limits the portability of the subroutine. Because a

program's V memory address assignment may be in conflict with the assignment in

another program. Instead, the subroutine which only use local variables is easy to

move, because there is no need to worry about addressing conflicts.

Interrupt routine

You can write an interrupt routine to handle some predefined interrupt events: The

interrupt routine is not called by the main program. When the interrupt event occurs,

it is called by the PLC operating system. Interrupt routine is best to use local variables.

You can use a local variable table to ensure that your interrupt routine uses only

temporary memory.

5.5 How to enter the ladder logic program

5.5.1 How to build a new project

Click Click the ‘New’ con in the toolbar. Or use the ‘New’ menu in the ‘File’ menu.

Create a new project.

 50

Open an existing project

Click the ‘Open’ icon in the toolbar. Or use the ‘Open’ menu in the ‘File’ menu.

5.5.2 Ladder logic element and its working principle

Ladder logic (LAD) is a graphical language which is similar to the electrical relay

diagram. When you write a program in LAD, you use graphical components and

arrange them into a logical network. The following component types are available for

use when you build a program:

Contact the switch which power supply can pass through. When the normally

open contact logic is 1 and the normally closed contact logic is 0, the power supply

can pass through these contacts.

Coil The coil represents the output.

 51

Block Each block represents a function.

The network is composed of the above elements. The power supply from the left

side of the power rod flows through the closed contact to charge the coil or the

block.

5.5.3 Network rules for series and parallel in LAD

Rules for placing contacts

Each network must begin with a contact.

The network cannot be terminated by contact.

Rules for placing coils

The network can’t start with the coil. The coil is used to terminate the logical network.

A network may have a number of coils, and the coils are located on a parallel branch

of the network. Could not be connected in series with more than one coil in the

network

Rules for placing blocks

If the block has ENO, the enable bit can be extended to the out of block. This means

that you can place more instructions behind the block. In the network, you can

connect in series with a number of boxes with ENO. If there is no ENO in the box, no

instruction can be placed on the following.

Network size limit

Cell is the area which is placed instruction. In the network, a single network can

extend 32 cells Vertically or 32 cells horizontally.

5.5.4 How to input commands in LAD

Line

You can use horizontal and vertical lines to connect elements to finish the network.

 52

Double click the instruction tree

1.Place the cursor in the position you want to edit in the program editor window.

Click the mouse, there will be a selection box.

2.Select the required instruction, double click it.

 Instruction will appear in the selected editing area.

Use the toolbar button or function key

1.Place the cursor in the position you want to edit in the program editor window.

Click the mouse, there will be a selection box.

1.Select the required button in the toolbar

Or use the functional keys (F4= contacts, F6= coil, F9= box).

2.The second step is over, there will be a drop-down list. Find the needed instructions

in the list. Double click the instruction or use the ENTER key to enter the instruction.

 53

5.5.5 How to enter the address in LAD

When you enter a command in the LAD, the instruction contains question marks. The

question mark indicates that the parameter is not assigned. You can assign values to

the parameters of the element when you enter the element. If the parameter is not

assigned, the program will not be properly compiled.

To specify a symbolic address, you must perform the following simple steps:

1. Enter a symbol or variable name in the address area of the instruction.

2. If it is a global symbol, the symbol table / global variable table is used for

Specifying a symbol name to the memory address.

Attention: You can use local variable table at the top of the program editor window.

Input symbol name in the "symbol" column. Because the compiler will automatically

specify the L memory address, you do not have to enter the address for the local

variable. You can drag the edge of the table to minimize the size of the local variable

table.

5.5.6 How to edit program elements in LAD

Cut, copy, paste, or delete multiple networks

By dragging the mouse or holding down the shift key with the mouse to select the

adjacent networks, you can choose a number of adjacent networks for cutting,

 54

copying, pasting or deleting options.

First of all, you should select a project, and then you can use the copy function. The

contents of the copy are placed in the Windows clipboard buffer.

You can choose the following objectives in the project:

1. Program text or data domain

2.Instructions in the LAD, STL editors

3. Single network

4. Multiple adjacent networks

5. All networks

6.Symbol table, row and column of the symbol table

7.State table, row and column of the state table

Edit cells, instructions, addresses, and networks

1.Select an empty cell, you can use the right key to select the operations as follows:

2.Select an instruction, you can use the right key to select the operations as follows:

 55

3.You can cut and paste elements and rows, delete rows or columns.

Delete element:

You can use the DELETE or BACKSPACE key to delete the cells. You can select the

elements that need to be deleted, use the right key to select the “delete” function

component.

Attention: In order to select the vertical line that needs to be deleted, you should use

the cursor to select the vertical line.

5.5.7 How to use find / replace

1.Select Edit > Find, Edit > replace

2. Use the shortcut key CTRL+F to start the search function.

 56

How to use search and replace function

Search function

1.Enter the string you want to search in the “Find What” field.

2.You can use the “Find up” and “Find down” functions.

Replacement function

1.Enter the string you want to search in the “Find What” field.

2.Enter the string you want to replace in the “Replace With” field.

3.To find the next string, click the “Next” button.

4.If you want to replace the string, click "Replace". If you want to replace all of the

characters, click “Replace All”.

Where to use

You can use the "find" and "replace" in the program editor window.

How them works

1.The "find" function allows you to search strings, such as the operation of network

number, title, instruction mnemonic or register name. ("Find" function does not

search network comments, It just search the network title.)

2."Replace" function allows you to replace the specified string.

5.5.8 How to display errors in LAD in the program editor

Red words display errors.

Attention: When you replace the invalid value or symbol with a valid value, the font is

automatically changed to the default font color.

 57

5.5.9 How to compile in LAD

You can use the toolbar button or the “PLC” menu to compile.

"Compile" Allows you to compile a single element of the project. When you select

"compile", the current window is compiled and the other windows are not compiled.

"All compile" Compiles the program editor, system block, and data block. When

you use the "All compile" command, all windows are compiled.

Use the output window to resolve the error

When you compile a program, the output window lists all the errors about the

program. Errors include location (network, row and column) and error types.

5.5.10 How to save the project

You can use the 'Save' button in the toolbar or the 'Save' menu under the 'File' menu

in the menu bar to save the program. Its shortcut key is 'CTRL+S'.

 58

"Save" allows you to save all changes quickly in your project.

“Save as” allows you to change the name of the current project and the location of

the directory.

5.6 How to set up a communication and download program

5.6.1 Communication settings

1. Select the communication method. Some PLC models only support serial port,

while some PLC models support both serial port and Ethernet.

Set the communication parameters in ‘Communication’. For related content, please

refer to here.

Serial port:

Ethernet:

 59

2.Select the PLC model: Ensure that the PLC model in the software is consistent with

the actual PLC model.

5.6.2 Download program

If xLadder and PLC communicate successfully, you can download the program to the

PLC. Steps are as follows:

Attention: The new program will cover the old program.

 60

1. Before the program is downloaded to PLC, the program needs to be compiled

.

2. After the success of the compiler, click the "download" button in the toolbar,

or select File > download.

The interface is as follows:

Click OK.

Click Yes, the software will automatically download the program block, the data block

and the CPU configurations to the PLC.

3. When the program is downloaded successfully, the interface is as follows:

 61

There are three options, you can choose one of them.

4. When you choose “yes” or “no”, you can click on the “connection” to

monitor the program. When you choose “cancel”, PLC is stopped. You can click on the

“run” button ，then click on the “connection” to monitor the program.

5. If the type of PLC set in the software is not consistent with the PLC type of the

actual connection, the software will display a warning message.

6. You can double click on the project of the project manager to modify the PLC

model.

7. Click the “download” button to download the program again.

8. If the program downloads successfully, you can convert the PLC from the STOP

mode to the RUN mode to run the program.

5.6.3 How to correct compilation errors and download errors

The output window automatically displays program information and error messages

at any time when you compile a program or download a program.

The information usually includes the error of the network, the column and row

position and the error code and instructions.

 62

Follow the prompts to correct the errors.

If you have closed the output window, select View > Frame > Information output

from the menu bar to display the output window again.

5.7 How to monitor the program

After the program is created, you can use the offline simulation button in "debug" to

simulate the program. You can also download the program to the PLC and use the

online monitoring button to observe the program running in the PLC.

Debug Toolbar：

Simulate:

Online monitoring:

Run / Stop:

This chapter does not describe the simulation content of the program, please refer to

here for related content.

 63

If this toolbar is closed, you can open it again using the method shown in the figure

below.

What is "state monitoring"?

State monitoring shows the current value of the PLC data and the information of the

current state. You can monitor, read, write, and enforce PLC data values by using the

status table. When the program runs, there are two ways to view the PLC data

dynamics.

Status table monitoring

Displays the data status in the table: you can specify address, data type, value, and

forced.

Program status monitoring

Displays data status in the program editor window: The current PLC data value is

displayed on the STL statement or LAD graph.

Program status monitor window and status table monitor window can be run

simultaneously:

PLC data written or forced in the state table window will be applied to the program

status monitor window.

The conditions of Viewing data status

1. xLadder and PLC communicate successfully.

2. Download the program to the PLC successfully.

 64

3. To view the continuous changes of the PLC data state, the PLC must be located in

the RUN mode.

4. If the program that you monitor is not implemented, there will not be a state

display.

Attention:

If the program downloads successfully, you have to convert the PLC from the STOP

mode to the RUN mode to run the program. Because in STOP mode, you will not be

able to see the expected results of the program logic operation.

How to view data status

In RUN mode, click on the connection to monitor the program. Write the

address of the data that you want to view in the state table, the status table will

show its current value.

 The color of execution status:

Contact: When the contact is switched on, the instruction will change the color.

Coil: When the output is switched on, the instruction will change the color.

PLC RUN / STOP mode

Use the following methods to change the PLC operation mode:

1.Click the "run" button to execute the RUN mode. Or click the "stop" button to

execute the STOP mode.

2.Select the PLC > run menu command to execute the RUN mode，Or select PLC >

stop menu command to execute the STOP mode.

3.Insert a STOP instruction in the program.

 65

Mandatory and cancel the mandatory

Forced

Enter the address and its value that you want to force in the state table. Then select

the mandatory function. Before canceling the mandatory, the mandatory function

has been effective.

"Mandatory" function covers "read immediately " and "write immediately" functions.

I/O points can be forced, and other storage areas can’t be forced.

Cancel the mandatory

Select “unforced” in the status table to cancel mandatory.

5.8 PLC operation and options

Elements of the control program

Ladder Program

In the LAD program, the basic elements of the logic are represented by contacts, coils,

and boxes.

The input is represented by a symbol called a contact. Contact is divided into

normally open contact and normally closed contact.

Normally open contact: a contact that is open in nature.

Normally closed contact: a contact that is closed in nature.

The output is represented by a symbol called a coil.

The blocks are function blocks with various functions. The blocks can make

programming easier.

STL program

The STL program elements are represented by instructions. Ladder diagram and

instructions are as follows:

 66

System blocks configuration

Instructions: The detailed annotation of operation interface--->System blocks

 67

6. xLadder instructions descriptions

6.1 Bit logic

6.1.1 Normally open and normally closed

Input / output Operand Data type

Bit（LAD、STL） I, Q, M, SM, T, C, V, S, L Boolean

When the bit is equal to 1, the normally open contact

is closed, and the normally closed contact is

disconnected.

When the bit is equal to 0, the normally open contact

is disconnected, and the normally closed contact is

closed.

In STL, the normally open contact is represented by

“LD”, "And" and "Or" instructions.

In STL, normally closed contacts are represented by

"NOT", "NOT AND" and "NOT OR" instructions.

 68

Example:

6.1.2 Normally open immediate and normally closed immediate.

When PLC executes the instruction, the immediate instruction

obtains the actual input value, but the PLC does not update

the process image register.

The immediate contact update does not depend on the PLC

scan cycle; it will be updated immediately.

When the actual input point is 1, normally open immediate is

closed.

When the actual input point is 0, normally closed immediate is

closed.

In LAD, normally open immediate and normally closed

immediate instructions are represented by contacts.

 Forcing function can’t be used for immediate input instructions.

 69

6.1.3 NOT Reverse instruction

The functions of "NOT instruction" are as follows:

When the input is 0, the output is 1.

When the input is 1, the output is 0.

In LAD, the NOT instruction is represented by a contact.

Example:

6.1.4 Rising edge and falling edge

When left logic is converted from 0 to 1, Rising edge contact

conduction time is a scan cycle.

When left logic is converted from 1 to 0, Falling edge contact

conduction time is a scan cycle.

In LAD, the rising edge and the falling edge are represented

by the contacts.

Example:

 70

6.1.5 Output

Input / output Operand Data type

Bit I, Q, M, SM, T, C, V, S, L Boolean

Input （LAD） Enable bit Boolean

The output instruction writes the new value of output bit to

process image register.

In LAD, when the output instruction is executed, the PLC will

open or close the output bit in the process image register.

Example：

 71

6.1.6 Output immediate

Input / output Operand Data type

Bit Q Boolean

Input（LAD） Enable bit Boolean

The new value generated by executing the immediate output

instruction is written to the actual output and the

corresponding process image register.

6.1.7 Set and reset

Input / output Operand Data type

Bit I, Q, M, SM, T, C, V, S, L Boolean

N VB, IB, QB, MB, SMB, SB, LB, AC, constant, *VD, *AC, *LD Byte

"Set” instruction can make a bit or a series of bits be 1.

"Reset” instruction can make a bit or a series of bits be 0.

The value of N is between 1 and 255.

The “reset” instruction can reset the bits of the timer and

counter, and can clear the current value of the timer and

counter.

Example:

 72

6.1.8 Set immediate and reset immediate

Input / output Operand Data type

Bit Q Boolean

N VB, IB, QB, MB, SMB, SB, LB, AC, constant, *VD, *AC, *LD Byte

“Set immediate” can set many of points immediately.

“Reset immediate” can reset many of points immediately.

The value of N is between 1 and 128.

"I" means "reference immediately". The new value generated

by executing the instruction is written to the actual output

and the corresponding process image register.

6.1.9 SR instruction

Input / output Operand Data type

S1, R Enable bit Boolean

OUT Enable bit Boolean

xxx I, Q, M, V, S Boolean

Bistable trigger is a latch. When both R and S1 are equal to 1, the

 73

output is 1.

The truth table of the "SR" instruction is as follows:

Instruction S1 R OUT

SR 0 0 Previous state

 0 1 0

 1 0 1

 1 1 1

Example：

6.1.10 RS instruction

Input / output Operand Data type

S, R1 Enable bit Boolean

OUT Enable bit Boolean

xxx I, Q, M, V, S Boolean

Bistable trigger is a latch. When both R1 and S are equal to 1, the

output is 0.

The truth table of the "RS" instruction is as follows:

Instruction S R1 OUT

RS 0 0 Previous state

0 1 0

1 0 1

 74

1 1 0

Example：

6.1.11 NOP instruction

NOP instruction is invalid for user program execution. The

value of N is between 0 and 255.

 75

6.2 Clock instruction

6.2.1 Read and set the real time clock

Input / output Operand Data type

T VB, IB, QB, MB, SMB, SB, LB, *VD, *AC, *LD Byte

TODR instruction reads the current time and date from the

hardware clock and load it into the time buffer of 7bytes

starting at the address T.

The TODW instruction writes the current time and date to

the hardware clock that is specified by the 7 bytes time

buffer at the beginning of the T.

All date and time values must be encoded in USINT format. Please refer to the

following table.

T byte direction byte data type

0 second USINT

1 minute USINT

2 hour USINT

3 date USINT

4 week USINT

5 month USINT

6 year USINT

 76

6.3 Communication

6.3.1 Get port address

Input / output Operand Data type

ADDR VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte

PORT Constant（0 or1） byte

The GET -ADDR instruction reads the PLC port site from the

PORT，and put the value in the address specified in the ADDR.

6.3.2 Set port address

Input / output Operand Data type

ADDR VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *LD, *AC byte

PORT Constant（0 or 1） byte

SET- ADDR instruction set the PORT site to the value specified

in the ADDR.

The new address is not permanently saved.

Example:

 77

6.4 Compare

 78

6.4.1 Byte compare

Input / output Operand Data type

Input IB, QB, MB, SMB, VB, SB, LB, AC, constant, *VD, *LD, *AC byte

Byte comparison instructions are used for comparing two

values：IN1 and IN2.

Comparison includes：IN2、IN1 >= IN2、IN1 <= IN2、IN1 > IN2、IN1

< IN2 or IN1 <> IN2.Byte comparison without symbol.

In LAD, the contact is open when the result is 1.

Attention：

The following conditions are serious errors. These errors will

cause the PLC to immediately stop the execution of the

program:

1.Enter illegal indirect address.

2.Enter the illegal real number

Example：

 79

6.4.2 Integer comparison

Input / output Operand Data type

Input IW, QW, MW, SW, SMW, T, C, VW, LW, AIW, AC, constant, *VD, *LD, *AC Integer

Comparison instructions are used for comparing two values：IN1

and IN2.

Comparison includes：IN1 = IN2、IN1 >= IN2、IN1 <= IN2、IN1 >

IN2、IN1 < IN2 or IN1 <> IN2.

Integer comparison with symbol (16#7FFF > 16#8000).

In LAD, when the comparison result is true, the contact

will be open.

Attention：The following conditions are serious errors.

These errors will cause the PLC to immediately stop the

execution of the program:

1.Enter illegal indirect address.

2.Enter the illegal real number.

Example:

 80

6.4.3 Double integer comparison

Input / output Operand Data type

Input ID, QD, MD, SD, SMD, VD, LD, HC, AC, constant, *VD, *LD, *AC Double integer

Comparison double integer instructions are used for

comparing two values：IN1 and IN2.

Comparison includes：IN1 = IN2、IN1 >= IN2、IN1 <= IN2、IN1 >

IN2、IN1 < IN2 or IN1 <> IN2.

Double integer comparison with symbol（16#7FFFFFFF >

16#80000000).

In LAD, when the comparison result is true, the contact

will be open.

Attention: The following conditions are serious errors.

These errors will cause the PLC to immediately stop the

execution of the program:

1.Enter illegal indirect address.

2.Enter the illegal real number.

 Example:

 81

6.4.4 Real number comparison

Input / output Operand Data type

Input ID, QD, MD, SD, SMD, VD, LD, AC, constant, *VD, *LD, *AC Real number

Comparison real number instructions are used for

comparing two values：IN1 and IN2.

Comparison includes：IN1 = IN2、IN1 >= IN2、IN1 <= IN2、IN1 >

IN2、IN1 < IN2 or IN1 <> IN2.Real number comparison with

symbol.

In LAD, when the comparison result is true, the contact

will be open.

Attention: The following conditions are serious errors.

These errors will cause the PLC to immediately stop the

execution of the program:

1.Enter illegal indirect address.

2.Enter the illegal real number.

 Example:

 82

6.4.5 String comparison

Input / output Operand Data type

IN1 VB, Constant string, LB, *VD, *LD, *AC String

IN2 VB, LB, *VD, *LD, *AC String

Comparison string instructions are used for comparing

two ASCII strings: IN1=IN2，IN1<>IN2

In LAD, when the comparison result is true, the

comparison contact will be turned on.

The maximum length of a single constant string is 126

bytes. The maximum combined length of the two

constant string is 242 bytes.

Attention: The following conditions are serious errors.

These errors will cause the PLC to immediately stop the execution of the program:

1.Enter illegal indirect address.

2.Enter a string of more than 254 characters in length.

3.The start address and length of the string cannot be put into a specified memory

area.

ASCII constant string data type format:

String is a series of characters and the corresponding memory address, each

character is stored in a byte. The value of the first byte of a string is the length of the

string. If a constant string is entered directly into the program editor or data block,

the string must start and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type. The length of a

string can be between 0 and 254 characters. The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

..................................

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

 83

6.5 Convert

6.5.1 Byte to integer

Input / output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC, constant, *AC, *VD, *LD Byte

OUT VW, IW, QW, MW, SW, SMW, LW, AQW, T, C, AC, *VD, *LD, *AC Integer

Byte to integer：The B-I instruction converts the byte value

to the integer value, and the result is inserted into the

variable specified by the OUT. Because the byte does not

have a symbol, the result does not have extension of the

symbol.

 84

6.5.2 Integer to byte

Input / output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *LD, *AC Integer

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte

Integer to byte: I-B Instruction converts the value of a

word to a byte value, and the result is inserted into the

variable specified by the OUT. The numerical range is 0

to 255. Other values will result in overflow and the

output will not be affected.

6.5.3 Integer to double integer

Input / output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC, constant, *VD, *LD, *AC Integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double-integer

Integer to double integer：I- DI instruction converts the

value of integer to a double integer value, and the result

is inserted into the variable specified by the OUT. Sign is

extended.

6.5.4 Integer to string

Input / output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, constant, AC, *VD, *LD, *AC Integer

FMT VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

OUT VB, *VD, LB, *AC, *LD String

 85

I-s instruction: the instruction converts the integer

word to a ASCII string of 8 characters in length. Format

(FMT) specifies the number of digits to the right of the

decimal point. The result string is written in 9

consecutive bytes from the OUT.

Illegal format（nnn > 5）

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type. The length of a

string can be between 0 and 254 characters. The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

..................................

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

The following is the definition of Operation number of ITS format:

MSB LSB

7 6 5 4 3 2 1 0

0 0 0 0 c n n n

C = comma (1) or decimal point (0)

nnn = The number of digits on the right side of the decimal point

The length of the output string is always 8 characters. nnn valid values are from 0 to

5. If nnn=0, the value will be displayed without a decimal point. When the value of

NNN is greater than 5, the output is displayed as a string of 8 ASCII space characters.

C decides to use a comma or a decimal point between integer and decimal. The 4 bits

above the top of the format must be zero.

 86

6.5.5 Double integer to integer

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, AC, constant, *VD, *LD, *AC Double integer

OUT VW, IW, QW, MW, SW, SMW, LW, AQW, T, C, AC, *VD, *LD, *AC Integer

Double integer to integer：DI-I instruction converts the

value of double integer to an integer value, and the result

is inserted into the variable specified by the OUT.

Large value will result in overflow and the output will not

be affected.

6.5.6 Double integer to real number

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, AC, constant, *VD, *AC, *LD Double integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

Double integer to real number：Instruction converts 32-bit

signed integer to 32 bit real number, and the result is

inserted into the variable specified by the OUT.

Example:

 87

6.5.7 Double integer to string

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, constant, AC, *VD, *AC, *LD Double integer

FMT VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

OUT VB, *VD, LB, *AC, *LD String

Double integer to string：DI-s instruction: the instruction

converts the double integer to a ASCII string of 12 characters in

length. Format (FMT) specifies the number of digits to the right of

the decimal point. The output string is written in 13 consecutive

bytes from the OUT.

Illegal format（nnn > 5）

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type. The length of a

string can be between 0 and 254 characters. The maximum length of the string is 255

bytes.

 88

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

..................................

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

The following is the definition of Operation number of ITS format:

MSB LSB

7 6 5 4 3 2 1 0

0 0 0 0 c n n n

C = comma (1) or decimal point (0)

nnn = The number of digits on the right side of the decimal point

The length of the output string is always 12characters.nnn valid values are from 0 to

5. If nnn=0, the value will be displayed without a decimal point. When the value of

NNN is greater than 5, the output is displayed as a string of 12 ASCII space characters.

C decides to use a comma or a decimal point between integer and decimal. The 4 bits

above the top of the format must be zero.

6.5.8 BCD to integer, integer to BCD conversion

Input/output Operand Data type

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

The BCD -I instruction converts the binary coded decimal

value to the integer value, and loads the result into the

variable specified by the OUT. “IN” BCD value range is 0 to

9999.Integer to BCD instruction converts the integer value

to binary coded decimal value and loads the result into

the variable specified by the OUT. The range of input

values is 0 to 9999.

Example:

 89

6.5.9 ROUND

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer

The ROUND instruction converts the real number value to a

double integer value and the result is inserted into the

variable specified by the OUT. If the fractional part is equal to

or greater than 0.5, the integer part will be added to 1.

Example:

 90

6.5.10 TRUNC

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD Double integer

TRUNC: Instruction converts 32 bits of real number to 32

bits integer, and the result is inserted into the variable

specified by the OUT.

Only the integer part of the real number is converted, and

the fractional part is discarded.

Example:

6.5.11 Real number to string

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, constant, AC, *VD, *LD, *AC Real number

FMT VB, IB, QB, MB, SB, SMB, LB, constant, AC, *VD, *LD, *AC Byte

OUT VB, LB, *VD, *AC, *LD String

R-S: Instruction converts the real number value to a ASCII

string. (FMT) format specifies the conversion accuracy of

the right of the decimal point.

The conversion result is placed in a string starting with OUT.

The output string length specified in the format can be 3 to

15 characters. The format of real numbers used in PLC is at

most 7 digits.

 91

Illegal format:

 nnn > 5

 ssss < 3

 ssss < Required number of characters

ASCII constant string data type format：

String is a series of characters, each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type. The length of a

string can be between 0 and 254 characters. The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

..................................

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

The following is the RTS instruction format (FMT) operand definition:

MSB LSB

7 6 5 4 3 2 1 0

s s s s c n n n

ssss = The length of the output string

c = Comma (1) or decimal point (0)

nnn = The number of characters of the right of the decimal point.

The length of the output string is specified by the SSSS field.0, 1, or 2 bytes are not

valid. The effective range of the NNN is from 0 to 5.NNN is equal to 0, the output

shows no decimal point. When the NNN value is greater than 5 or when the specified

output string length is too small to store the conversion value, the output string is

filled with ASCII space characters. The C bit specifies using a comma (C = 1) or a

decimal point (C = 0).

Prompt: output string according to the following rules

 92

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-”.

3.The starting zero on the left of the decimal point is compressed.

4.The size of the output string must be 3 bytes larger than “nnn”

5.The value in the output string must be aligned to the right.

Example：

6.5.12 Integer to ASCII code

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC, constant, *VD, *LD, *AC Integer

FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *LD, *AC byte

ITA: The instruction converts the integer word to ASCII

characters. (FMT) format specifies the conversion

accuracy of the right of the decimal point.

The conversion result is placed in the 8 successive bytes

from the OUT.ASCII character number is always 8

characters.

Error condition:

nnn > 5

The following is the ITA instruction format (FMT) operand definition:

The size of the output buffer is always 8 bytes. nnn = The number of characters of the

 93

right of the decimal point. The effective range of the NNN is from 0 to 5.NNN is equal

to 0, the output shows no decimal point. When the NNN value is greater than 5, the

output string is filled with ASCII space characters. The C bit specifies using a comma

(C = 1) or a decimal point (C = 0). High 4 bits must be 0.

Prompt: The output according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-”.

3.The starting zero on the left of the decimal point is compressed.

4.The value in the output string must be aligned to the right.

Example:

Example:

As shown in Figure：The integer input is 123；nnn=1

The output value is as follows：

VB7 16#33 3

 94

VB6 16#2E .

VB5 16#32 2

VB4 16#31 1

VB3 16#20 Space

VB2 16#20 Space

VB1 16#20 Space

VB0 16#20 Space

6.5.13 Double integer to ASCII code

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, constant, AC, *VD, *AC, *LD Double integer

FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *LD, *AC Byte

DTA：The instruction converts the double integer to ASCII

characters. (FMT) format specifies the conversion

accuracy of the right of the decimal point.

The conversion result is placed in the 12 successive bytes

from the OUT.

Error conditions:

FMT high four bits value is greater than 0

nnn > 5

The following is the DTA instruction format (FMT) operand definition:

The size of the output buffer is always 12 bytes. nnn = The number of characters of

the right of the decimal point. The effective range of the NNN is from 0 to 5.NNN is

equal to 0, the output shows no decimal point. When the NNN value is greater than

5, the output string is filled with ASCII space characters. The C bit specifies using a

 95

comma (C = 1) or a decimal point (C = 0). High 4 bits must be 0.

Prompt: The output according to the following rules

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-”.

3.The starting zero on the left of the decimal point is compressed.

4.The value in the output string must be aligned to the right.

Example:

6.5.14 Real number to ASCII code

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, constant, *VD, *LD, *AC Real number

FMT VB, IB, QB, MB, SB, SMB, LB, AC, constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *LD, *AC Byte

RTA: The instruction converts the real number to ASCII

characters. (FMT) format specifies the conversion

accuracy of the right of the decimal point.

The conversion result is placed in the output buffer from

the OUT. The length of the output buffer is 3 to 15

characters.

Error conditions:

nnn > 5

ssss < 3

ssss < Number of characters in OUT

The following is the RTA instruction format (FMT) operand definition:

The length of the output string is specified by the SSSS field.0, 1, or 2 bytes are not

 96

valid. The effective range of the NNN is from 0 to 5.NNN is equal to 0, the output

shows no decimal point. When the NNN value is greater than 5 or when the specified

output string length is too small to store the conversion value, the output string is

filled with ASCII space characters. The C bit specifies using a comma (C = 1) or a

decimal point (C = 0).

The output according to the following rules:

1.Positive number is written to output buffer without a sign.

2.Negative number is written to the output buffer with “-”.

3.The starting zero on the left of the decimal point is compressed.

4. The number of characters of the right of the decimal point is equal to the value of “nnn”.

5.The size of the output string must be 3 bytes larger than “nnn”.

6.The value in the output string must be aligned to the right.

Example:

Example:

Convert the real number 123.45 into ASCII code. The output is 6 bytes.

 97

The output:

VB0 VB1 VB2 VB3 VB4 VB5

16#31 16#32 16#33 16#2E 16#34 16#35

1 2 3 . 4 5

6.5.15 ATH&HTA

Input/output Operand Data type

IN,OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte

LEN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

ASCII to HEX Instruction converts the ASCII characters

starting with “IN” to the hexadecimal digits starting with

the “out”. The maximum length of the ASCII string is 255

characters.

HEX to ASCII Instruction converts the hexadecimal digits

starting with “IN” to the ASCII characters starting with

the “out”.

The length of conversion hexadecimal digits is specified

by the LEN. The maximum length is 255.

Valid ASCII input character:

Numbers 0 to 9 and capital letters A to F.

ASCII Codes: 30 to 39 and 41 to 46.

Error condition: Illegal ASCII code

Example:

 98

6.5.16 String to integer

Input/output Operand Data type

IN VB,constant string, LB, *VD, *LD, *AC String

INDX VB, IB, QB, MB, SB, SMB, LB,constant, AC,*VD, *LD, *AC Byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, AC, *VD, *LD, *AC Integer

S-I：The instruction converts the string value “IN” to the

integer value stored in the OUT, starting with the offset

INDX location.

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type. The length of a

string can be between 0 and 254 characters. The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

..................................

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

INDX value is typically set to 1, starting conversion from the first character of the

string. INDX value can be set to other values. This method can be used when the

input string contains characters that are not required to be converted. For example, if

the input string is "Temperature: 77.8", you can set INDX value 13 to skip the

characters "Temperature:".

When the end of the string is reached or when the first invalid character is found, the

conversion is terminated. Invalid character is any character other than number (0-9).

 99

The following table shows examples of valid and invalid integer input strings:

Example:

Enter the string "12@45”. The S-I instruction converts the string from the first

character, and the result is an integer 12.

 100

6.5.17 String to double integer

Input/output Operand Data type

IN VB,constant string, LB, *VD, *LD, *AC String

INDX VB, IB, QB, MB, SB, SMB, LB,constant, AC,*VD, *LD, *AC Byte

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer

S- DI: The instruction converts the string value “IN” to the

double integer value stored in the “OUT”, starting with the

offset INDX location.

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type. The length of a

string can be between 0 and 254 characters. The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

..................................

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

INDX value is typically set to 1, starting conversion from the first character of the

string. INDX value can be set to other values. This method can be used when the

input string contains characters that are not required to be converted. For example, if

the input string is "Temperature: 77.8", you can set INDX value 13 to skip the

characters "Temperature:".

When the end of the string is reached or when the first invalid character is found, the

conversion is terminated. Invalid character is any character other than number (0-9).

 101

The following table shows examples of valid and invalid integer input strings:

Example:

Enter the string "123B5”. The S- DI instruction converts the string from the first

character, and the result is a double integer 123.

Because B is an invalid character, the characters after B are no longer converted.

 102

6.5.18 String to real number

Input/output Operand Data type

IN VB,constant string, LB, *VD, *LD, *AC String

INDX VB, IB, QB, MB, SB, SMB, LB,Constant, AC,*VD, *LD, *AC Byte

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

S-R: The instruction converts the string value “IN” to the

real number value stored in the “OUT”, starting with the

offset INDX location.

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

The following memory map shows the format of the string data type. The length of a

string can be between 0 and 254 characters. The maximum length of the string is 255

bytes.

String

length

Character

1

Character

2

Character

3

Character

4

Character

5

..................................

Character

254

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 254

INDX value is typically set to 1, starting conversion from the first character of the

string. INDX value can be set to other values. This method can be used when the

input string contains characters that are not required to be converted. For example, if

the input string is “Temperature: 77.8”, you can set INDX value 13 to skip the

characters "Temperature:".

When the end of the string is reached or when the first invalid character is found, the

conversion is terminated. Invalid character is any character other than number (0-9).

This instruction does not generate overflow errors, but only converts the string to

 103

real number and then terminates the conversion.

For example, the string "1.234E6" will be converted to a real number value “1.234”

without generating an error message.

The following table shows examples of valid and invalid integer input strings:

 Example:

 Input string “2.345” and output the real number 2.345

6.5.19 DECO

Input/output Operand Data type

IN VB, IB, QB, MB, SMB, LB, SB, AC, constant, *VD, *LD, *AC Byte

OUT VW, IW, QW, MW, SMW, LW, SW, AQW, T, C, AC, *VD, *AC, *LD word

The low four bits value of input byte is n, the nth bit of the

output word is equal to 1.

 104

The other bits of the output word are set to 0.

Example:

The low four bits value of VB0 is 15, the 15th bit of the VW10 is equal to 1.

The other bits of the VW10 are set to 0.

6.5.20 ENCO

Input/output Operand Data type

IN VW, IW, QW, MW, SMW, LW, SW, AIW, T, C, AC, constant, *VD, *AC, *LD Word

OUT VB, IB, QB, MB, SMB, LB, SB, AC, *VD, *LD, *AC Byte

ENCO: The nth bit of the input word is equal to 1. The

low four bits value of output byte is n.

Example：

As shown in the above figure：The 15th bit of the input word vw0 is equal to 1. The

low four bits value of output byte vb10 is 15.

 105

6.5.21 Seven segment code

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SMB, LB, AC, *VD, *AC, SB, *LD Byte

SEG: The instruction generates the bits of the seven

segments.

The low four bits value of input byte is converted.

Seven segment code table:

Example:

Analysis:

The low four bits value of VB0 is 8. The value of the output byte VB1 is 16#7F. The

result of converting VB1 to binary is 2# 0111 1111.

 106

6.6 Counter

6.6.1 CTU

Input/output Operand Data type

C xxx Constant(C0—C255) Word

CU Enable bit Boolean

R Enable bit Boolean

PV VW, IW, QW, MW, SMW, LW, AIW, AC, T, C,constant, *VD, *AC, *LD, SW Integer

CU bit gets a high level and the current value of the

counter plus 1. When the current value is greater than or

equal to the present value, the counter bit opens. When R

gets a high level, the counter is restored. The maximum

value of the counter is 32767.

Counter range：C xxx=C0 ~ C255

The counter number of each counter is different.

Example:

 107

6.6.2 CTD

Input/output Operand Data type

Cxxx Constant(C0—C255) Word

CD Enable bit Boolean

LD Enable bit Boolean

PV VW, IW, QW, MW, LW, SMW, AC, T, C, AIW,constant, *VD, *AC, *LD, SW Integer

The bit of CD is converted from 0 to 1 and the current

value minus 1. When the current value is equal to 0, the

counter is opened and counter stops count. When the LD

bit is equal to 1, counter bit is restored and the preset

value is loaded into the current value.

Counter range：C xxx=C0~C255

Attention: The counter number of each counter is different.

Example:

6.6.3 CTUD

Input/output Operand Data type

C xxx Constant(C0—C255) word

CU, CD Enable bit Boolean

R Enable bit Boolean

PV VW, IW, QW, MW, LW, SMW, AC, T, C, AIW,constant, *VD, *AC, *LD, SW Integer

 108

CU bit gets a high level and the current value of the

counter plus 1. The bit of CD is converted from 0 to 1 and

the current value minus 1. When the current value is

greater than or equal to the present value, the counter bit

opens. The maximum value of the counter is 32767, and

the minimum value is -32768.When R gets a high level, the

counter is restored.

Counter range：C xxx=C0~C255

Attention: The counter number of each counter is different.

Example：

6.7 Floating point calculation

 109

6.7.1 ADD-R&SUB-R

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SD, SMD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

ADD-R: Adding N1 and N2, the result is put into the

output buffer.

SUB-R: N1 minus N2, the result is put into the output

buffer.

N1, N2, and OUT are 32 bits of real numbers.

 IN1 + IN2 = OUT

 IN1 - IN2 = OUT

 Special memory bit:

 SM1.0 Zero result

 SM1.1 Overflow

 SM1.2 Negative result

 SM1.1 is used to indicate overflow errors and illegal values.

Example:

 110

6.7.2 MUL - R&DIV - R

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

MUL - R:IN1 multiplied by IN2, the result is put into the

output buffer.

DIV - R:IN1 divided by IN2, the result is put into the output

buffer.

IN1, IN2, and OUT are 32 bits of real numbers.

IN1 * IN2 = OUT

IN1 / IN2 = OUT

Error conditions:

SM1.1 Overflow

SM1.3 The divisor is 0

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

SM1.3 The divisor is 0

 Example:

 111

6.7.3 SQRT

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

SQRT: Enter a 32 bits real number (IN). Take “IN” square

root and output 32 bits real number.

Formula:

OUTIN =

Error conditions:

SM1.1 Overflow

Special memory bits:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

SM1.1 is used for indicating overflow errors and illegal values.

 112

6.7.4 SIN

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

SIN：Perform trigonometric operations on the input radian

value and put the result into OUT. You can use the angle

value multiplied by 1.745329E-2 to get the value of the

radian. The value of the input “IN” is radian.

SM1.1 is used for indicating overflow errors and illegal

values.

Error conditions:

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

 113

6.7.5 COS

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

COS: Perform trigonometric operations on the input

radian value and put the result into OUT. You can use the

angle value multiplied by 1.745329E-2 to get the value of

the radian. The value of the input “IN” is radian.

SM1.1 is used for indicating overflow errors and illegal

values.

Error conditions:

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

6.7.6 TAN

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

TAN: Perform trigonometric operations on the input

radian value and put the result into OUT. You can use the

angle value multiplied by 1.745329E-2 to get the value of

the radian. The value of the input “IN” is radian.

SM1.1 is used for indicating overflow errors and illegal

values.

 error conditions:

SM1.1 Overflow

Special memory bit:

 114

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

6.7.7 LN

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

LN: Use the input value to perform natural logarithm

calculation and put the result in OUT.

The output value × 2.302585 ≈ Natural logarithm of 10

SM1.1 is used for indicating overflow errors and illegal values.

 error conditions:

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

 115

6.7.8 EXP

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Real number

EXP: Input value is N and output value is e
n

.

N is a real number.

SM1.1 is used for indicating overflow errors and illegal

values.

Example：

5 cube = 5^3=EXP(3*LN(5))=125

The cube root of 125 = 125^(1/3)=EXP(1/3)*LN(125))=5

5 cubic square root = 5^(3/2)=EXP(3/2*LN(5))=11.18034

Error condition:

0006 Indirect address

SM1.1 Overflow

Special memory bit:

SM1.0 Zero result

SM1.1 Overflow

SM1.2 Negative result

 116

6.7.9 PID

Input/output Operand Data type

TBL VB Byte

LOOP Constant(0 to 7) Byte

According to the parameters in the TBL, PID instruction

performs the PID operation. Up to 8 PID instructions can

be used in the program, the value of LOOP is the loop

number of PID.PID loop number can’t be the same,

otherwise it will cause interference. Parameters in the

TBL parameter table includes：Process, set value, output,

gain, sampling time, integration time, differential time, the last time integral term,

the last time the amount of the process.

The parameter table contains 36 bytes:

Offset Meaning Format Type Explain

0 PV n
 Process

quantity

DINT Input 0.0~1.0

4 SPn
 Set point DINT Input 0.0~1.0

8 Mn Output value DINT Input/Output 0.0~1.0

12 Kc gain Input Ratio constant

16 Ts Sampling time DINT Input Ms Positive

20 T I
 Integral time DINT Input S Positive

24 T D
 Differential time DINT Input S Positive

28 MI n 1−
 Last time

integral value

DINT Input/Output Last time

integral value

32 PV n 1−
Last time

process

DINT Input/Output Last time

process

 117

Mathematical formula of PID loop instruction:

Mn = MPn + MIn + MDn

• Mn: Output value

• MPn: Proportion term

• MIn: Integral term

• MDn: Differential term

Proportion term

MPn = Kc * (SPn - PVn)

• MPn: Proportion term

• Kc: gain

• SPn: Set point

• PVn: Process quantity

Integral term:

MIn = Kc * Ts / TI * (SPn - PVn) + MIn-1

• MIn: Integral term

• Kc: gain

• Ts: Sampling time

• TI: Integral time

• SPn: Set point

• PVn: Process quantity

• MIn-1: Last time integral term

Differential term:

MDn = Kc * TD / Ts * (PVn-1 - PVn)

• MDn: Differential term

• Kc: gain

 118

• TD: Differential time

• Ts: Sampling time

• PVn-1: Last time process variable

• PVn: Process variable

 119

6.8 Integer operations

6.8.1 ADD-I&SUB-I

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *LD, *AC Integer

OUT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *LD, *AC Integer

ADD-I: IN1 + IN2 = OUT Both input and output are 16

bits integers.

SUB-I：IN1 -IN2 = OUT Both input and output are 16 bits

integers.

IN1 + IN2 = OUT

IN1 -IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal

values.

Error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

 120

SM1.1 overflow

SM1.2 Negative result

Example：

6.8.2 ADD- DI & SUB- DI

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, AC, HC,Constant, *VD, *LD, *AC Double integer

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double integer

ADD- DI: IN1 + IN2 = OUT Both input and output are 32

bits integers.

SUB- DI:IN1 - IN2 = OUT Both input and output are 32

bits integers.

IN1 + IN2 = OUT

IN1 - IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal

values.

Error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

 121

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

Example：

6.8.3 MUL & DIV

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, LW, AC, AIW,constant, *VD, *LD, *AC Integer

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double Integer

MUL:IN1 X IN2= OUT Input 16 bits integers and output

32 bits integer.

DIV：IN1/IN2= OUT Input 16 bits integers and the

output result is 32 bits. The result includes a 16 bits

remainder (high) and a 16 bits quotient (low).

IN1 * IN2 = OUT

IN1 / IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal values.

 error conditions:

0006 Indirect address

SM1.1 overflow

 122

SM1.3 The divisor is 0

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

SM1.3 The divisor is 0

 Example:

6.8.4 MUL -I & DIV-I

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, LW, AC, AIW,constant, *VD, *LD, *Ac Integer

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC Integer

MUL -I: IN1 * IN2 = OUT Both input and output are 16

bits integers.

DIV-I: IN1 / IN2 = OUT Both input and output are 16 bits

integers. Output is quotient. There is no remainder.

If the output is larger than a word, then set overflow

bit.

IN1 * IN2 = OUT

 123

IN1 / IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal values.

Error conditions:

0006 Indirect address

SM1.1 overflow

SM1.3 The divisor is 0

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

SM1.3 The divisor is 0

Example:

 124

6.8.5 MUL -DI & DIV -DI

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SMD, SD, LD, HC, AC,constant, *VD, *LD, *AC Double integer

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double integer

MUL -DI: IN1 * IN2 = OUT Both input and output are 32

bits integers.

DIV -DI: IN1 / IN2 = OUT Both input and output are 32

bits integers.

Output is quotient. There is no remainder.

IN1 * IN2 = OUT

IN1 / IN2 = OUT

SM1.1 is used for indicating overflow errors and illegal values.

Error conditions:

0006 Indirect address

SM1.1 overflow

SM1.3 The divisor is 0

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

SM1.3 The divisor is 0

 Example:

 125

6.8.6 INC-B & DEC-B

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

INC-B: IN + 1 = OUT Both input and output are 8 bits

integers.

DEC-B:IN - 1 = OUT Both input and output are 8 bits

integers.

The two instructions operations do not take symbols.

IN + 1 = OUT

IN - 1 = OUT

Error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

Example:

 126

6.8.7 INC-W & DEC-W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, AC, AIW, LW, T, C,constant, *VD, *LD, *AC Integer

OUT VW, IW, QW, MW, SW, SMW, LW, AC, T, C, *VD, *LD, *AC Integer

INC-W: IN + 1 = OUT Both input and output are 16

bits integers.

DEC-W:IN - 1 = OUT Both input and output are 16

bits integers.

The two instructions operations take with symbols

(16#7FFF > 16#8000).

IN + 1 = OUT

IN - 1 = OUT

Error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

Example:

 127

6.8.8 INC -DW & DEC -DW

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double integer

INC -DW: IN + 1 = OUT Both input and output are 32

bits double integers.

DEC -DW:IN - 1 = OUT Both input and output are 32

bits double integers.

IN + 1 = OUT

IN - 1 = OUT

The two instructions operations take with symbols.

(16#7FFFFFFF > 16#80000000).

Error conditions:

0006 Indirect address

SM1.1 overflow

Special memory bit:

SM1.0 Zero result

SM1.1 overflow

SM1.2 Negative result

Example:

 128

6.9 Interrupt

6.9.1 ENI & DISI

Operand Data type

 Nothing Nothing

Interrupt enable（ENI）:If the instruction is activated, all

interrupts can be used.

Interrupt disable（DISI）:If the instruction is activated,

all interrupts can’t be used.

When the DISI instruction is used, the interrupt events

will be queued.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

 Example：

 129

6.9.2 RETI instruction

Operand Data type

Nothing Nothing

RETI：When the Logic in front of the RETI instruction is 1,

PLC execution returns from interrupt.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

 130

Interrupt use guide

Interrupt routine offers a quick response to a particular internal or external event.

Interrupt routine should be concise and efficient, so it can accelerate the speed of

execution.

Limit: DISI, ENI, HDEF, LSCR, and END instructions can not be used in the interrupt

routine.

Example:

6.9.3 ATCH

Input/output Operand Data type

INT Constant 0-127 Byte

EVNT Constant 0-33 Byte

ATCH: The interrupt event (EVNT) is connected to the

interrupt routine number (INT) by the “ATCH” instruction,

and then activates the interrupt event.

You can attach more than one interrupt events to an interrupt routine. However, an

interrupt event can’t be attached to the multiple interrupt routines. When you attach

an interrupt event to an interrupt routine, the interrupt is automatically enabled.

When the DISI instruction is used, the interrupt events will be queued.

If you want to disable a single interrupt event, you can use the "DTCH" instruction.

Interrupt Events:

 131

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

 Example: VD0 increases by 1 every 100ms

Notes:

Timed interrupt (Event 10)

SMB34 Timed Interrupt 0: Time interval value (in 1 ms increments from 1 ms to 255 ms**).

 Timed interrupt (Event 11)

SMB35 Timed Interrupt 1: Time interval value (in 1 ms increments from 1 ms to 255 ms**).

 132

“ATCH” instruction only needs to be connected once.

 133

6.9.4 DTCH

Input/output Operand Data type

EVNT Constant（0-33） Byte

Interrupt separation (DTCH) instruction cancels the

association between interrupt event (EVNT) and interrupt

routine, and disables the interrupt event.

The interrupt event (EVNT) is connected to the interrupt

routine number (INT) by the “ATCH” instruction, and then

activates the interrupt event.

You can attach more than one interrupt events to an interrupt routine. However, an

interrupt event can’t be attached to the multiple interrupt routines. When you attach

an interrupt event to an interrupt routine, the interrupt is automatically enabled.

When the DISI instruction is used, the interrupt events will be queued.

If you want to disable a single interrupt event, you can use the "DTCH" instruction.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

 Example:

 134

6.9.5 Clear interrupt event

Input/output Operand Data type

EVNT Constant Byte

CLR - EVNT instruction will remove all types of EVNT

interrupt events in interrupt queue. This instruction is

used for removing unnecessary interrupts.

Interrupt Events:

I1.2 Rising edge PLC_EVENT_INPUTP0 0 Highest priority

I1.4 Rising edge PLC_EVENT_INPUTP1 1 High priority

Timer interrupt 0 PLC_EVENT_TIMER0 10 Low priority

Timer interrupt 1 PLC_EVENT_TIMER1 11 Lowest priority

Example:

 135

6.10 Logic operation

6.10.1 INV -B

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte

INV -B: The instruction performs the complement

operation to the input byte and puts the result in OUT.

Error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

 136

6.10.2 INV -W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, T, C, AIW, LW, AC,constant, *VD, *AC, *LD word

OUT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word

INV -W: The instruction performs the complement

operation to the input word and puts the result in OUT.

Error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

 137

6.10.3 INV -DW

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, AC,constant, *VD, *AC, *LD Double word

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD Double word

INV -DW: The instruction performs the complement

operation to the input word and puts the result in OUT.

Error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

 Example:

 138

6.10.4 WAND-B、WOR -B、WXOR -B

Input/output Operand Data type

IN1, IN2 VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD Byte

WAND -B: The instruction performs “And calculation”

on IN1 and IN2.Then puts the result in out.

WOR -B: The instruction performs “OR calculation” on

IN1 and IN2.Then puts the result in out.

WXOR -B: The instruction performs “XOR calculation”

on IN1 and IN2.Then puts the result in out.

Error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

 Example:

 139

6.10.5 WAND-W、WOR -W、WXOR -W

Input/output Operand Data type

IN1, IN2 VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *AC, *LD word

OUT VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word

WAND -W: The instruction performs “And calculation”

on IN1 and IN2.Then puts the result in out.

WOR -W: The instruction performs “OR calculation” on

IN1 and IN2.Then puts the result in out.

WXOR -W: The instruction performs “XOR calculation”

on IN1 and IN2.Then puts the result in out.

Error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

 140

6.10.6 WAND- DW、WOR -DW、WXOR -DW

Input/output Operand Data type

IN1, IN2 VD, ID, QD, MD, SMD, AC, LD, HC,constant, *VD, *AC, SD, *LD Double word

OUT VD, ID, QD, MD, SMD, LD, AC, *VD, *AC, SD, *LD Double word

WAND -DW: The instruction performs “And calculation”

on IN1 and IN2.Then puts the result in out.

WOR -DW: The instruction performs “OR calculation”

on IN1 and IN2.Then puts the result in out.

WXOR -DW: The instruction performs “XOR calculation”

on IN1 and IN2.Then puts the result in out.

Error condition:

0006 Indirect address

Special memory bit:

SM1.0 Zero result

Example:

 141

6.11 Move

6.11.1 Byte move

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

MOV -B: The instruction moves the input byte (IN) to the

output byte (OUT), which does not change the original

value.

Error condition:

0006 Indirect address

Example:

 142

6.11.2 Word move

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, constant, AC, *VD, *AC, *LD word、integer

OUT VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW, *VD, *AC, *LD word、integer

MOV -W: The instruction moves the input word (IN) to

the output word (OUT), which does not change the

original value.

Error condition:

0006 Indirect address

Example:

 143

6.11.3 Double word move

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, HC, &VB, &IB, &QB,

 &MB, &SB, &T, &C, &SMB, &AIW, &AQW AC,

 constant, *VD, *LD, *AC Double word, double integer

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word, double integer

MOV -DW: The instruction moves the input double word

(IN) to the output double word (OUT), which does not

change the original value.

You can use the "MOVE-D" instruction to create a

pointer.

Error condition:

0006 Indirect address

Example:

 144

6.11.4 Real number move

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC,constant, *VD, *LD, *AC Real number

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Real number

MOV -R: The instruction moves the input real number

(IN) to the output real number (OUT), which does not

change the original value.

 Error condition:

0006 Indirect address

 Example:

 145

6.11.5 BLKMOV -B

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

OUT VB, IB, QB, MB, SB, SMB, LB, *VD, *AC, *LD Byte

These successive“N”bytes which start with “IN” are

moved to OUT.

The range of N is from 1 to 255.

 Error conditions:

0006 Indirect address

0091 Operating number is out of range

 Example:

 146

6.11.6 BLKMOV -W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, *VD, *LD, *AC word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD, *LD, *AC word

BLKMOV -W: These successive“N”words which start with

“IN” are moved to OUT.

The range of N is from 1 to 255.

 Error conditions:

0006 Indirect address

0091 Operating number is out of range

Example:

 147

6.11.7 BLKMOV -D

Input/output Operand Data type

IN, OUT VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD Double word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD Byte

BLKMOV - D：These successive“N”double words which

start with “IN” are moved to OUT.

The range of N is from 1 to 255.

 Error conditions:

0006 Indirect address

0091 Operating number is out of range

 Example:

 148

6.11.8 SWAP

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, T, C, LW, AC, *VD, *AC, *LD word

SWAP: The instruction interchanges high byte and low

byte of the input word.

 Error conditions:

0006 Indirect address

Example:

 149

6.11.9 MOV -BIR

Input/output Operand Data type

IN IB, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD byte

MOV -BIR: Instruction reads the actual input

value(byte), then writes the value to OUT. The process

image register is not updated.

 Error conditions:

0006 Indirect address

6.11.10 MOV -BIW

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *AC, *LD byte

OUT QB, *VD, *LD, *AC byte

MOV -BIW: The instruction writes the input value (IN) to

the actual input (OUT) and update the corresponding

process image register.

 Error conditions:

0006 Indirect address

 150

6.12 Program control

6.12.1 FOR、NEXT

Input/output Operand Data type

INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC Integer

INIT VW, IW, QW, MW, SW, SMW, T, C, AC, LW, AIW,constant, *VD, *LD, *AC Integer

FINAL VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW,constant, *VD, *LD, *AC Integer

FOR instruction executes instructions between FOR and

NEXT. You have to specify the current cycle count

(INDX), start value (INIT), and end value (FINAL). NEXT

(NEXT) instruction marks the end of the FOR loop, and

the top value of the stack is set to 1. Use FOR/NEXT to

set the number of loops. Each FOR instruction requires

a NEXT instruction. FOR/NEXT loops can be nested with

8 FOR/NEXT loops. After each execution of the FOR and

NEXT instructions, the INDX value is increased, and the

result is compared with the end value. If the INDX is

greater than the end value, the loop terminates.

Error condition:

0006 indirect address

Example:

 151

Notes：

Cycle times are set to 100 times. At the end of the cycle, the value of VW100 is 100.

 152

6.12.2 Jump to label and label

Input/output Data type

n:constant（0~255） word

JMP instruction performs the branch operation to the

program in the specified tag (n). When the jump is

accepted, the top value of the stack is 1.

LBL instruction signs the location of n.

You can use the "jump" instruction in the main

program, subroutine, or interrupt routine.

You can't jump from the main program to a subroutine

or an interrupt routine. You can use the "jump"

instruction in the SCR segment, but the corresponding

"label" instruction must be located within the same SCR segment.

 Example:

 When the M0.0 bit is 1, the value of VW100 is no longer increased.

 153

6.12.3 Sequence control relay

Input/output Operand Data type

 n S Boolean

SCR instruction is good at dealing with repetitive

operations.

SCR: load the SCR section, you can use the SET

instruction.

SCRT: Jump to another SCR segment and close the

current SCR segment.

SCRE: The instruction signs the end of SCR segment.

Example:

 154

 155

6.12.4 Return from subroutine

RET: Return from the subroutine to the main program.

Example：

Main program:

Subroutine:

When the M0.0 bit is 1, return from the subroutine, the following program will no

longer be scanned.

 156

6.12.5 Conditional end

The END instruction terminates the user program.

Notes：

You can use the "END" instruction in the main program,

but can’t be used in subroutine or interrupt routine.

Example:

When the M0.1 bit is 1, the program will not be scanned.

 157

6.12.6 STOP

STOP instruction：STOP

Example:

When the M0.1 bit is 1, PLC converts to the STOP mode, all the programs stop

running.

 158

6.12.7 Watchdog Reset

WDR clear watchdog time. When the scan cycle is

greater than the watchdog time, the WDR makes the

watchdog not issue a warning.

Using “WDR” instruction should be careful. The

following programs can be performed after the scan

cycle is completed.

1.Communication

2.I/O update (except for immediate I/O)

3.Forced update

4.SM bits update

5.Run time diagnostic program

6.STOP (stop) instruction for interrupt routine

Attention: If you expect scan time will be more than 500 ms, you should use the

WDR instruction to re trigger the watchdog timer.

Example:

 159

6.12.8 Diagnosis LED

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC String

If the value of “EN” is 1, then the LCD will display the string

from “IN”.

Example:

When the value of M0.0 is equal to 1, the LCD will display “Error”.

 160

6.13 Shift cycle

6.13.1 SHR -B & SHL -B

Input/output Operand Data type

IN VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

SHR -B: Input byte "IN" and move N bits towards the right.

Then place the results in OUT.

SHL -B: Input byte "IN" and move N bits towards the left.

Then place the results in OUT.

The moved-out bits are filled with zero. If N is greater than

or equal to 8, you can move up to 8 bits.

SHR -B & SHL -B operations are not signed.

Error conditions:

0006 Indirect address

Special memory bit:

SM1.0 Zero Result

SM1.1 Overflow

 161

Example:

When the value of M0.0 is 1, VB0 moves a bit towards the left and VB10 moves a bit

towards the right.

 162

6.13.2 SHR -W & SHL -W

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

SHR -W: Input word "IN" and move N bits towards the

right. Then place the results in OUT.

SHL -W: Input word "IN" and move N bits towards the left.

Then place the results in OUT.

The moved-out bits are filled with zero. If N is greater

than or equal to 16, you can move up to 16 bits.

SHR -W & SHL -W operations are signed. Symbol bit can

be moved.

Error conditions:

0006 Indirect address

Special memory bit:

SM1.0 Zero Result

SM1.1 Overflow

 Example:

When the value of M0.0 is 1, VW0 moves two bits towards the left and VW10 moves

two bits towards the right.

 163

6.13.3 SHR -DW & SHL -DW

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Double word

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word

SHR -DW: Input double word "IN" and move N bits

towards the right. Then place the results in OUT.

SHL -DW: Input double word "IN" and move N bits towards

the left. Then place the results in OUT.

The moved-out bits are filled with zero. If N is greater than

or equal to 32, you can move up to 32bits.

SHR -DW & SHL -DW operations are signed. Symbol bit can

be moved.

Error conditions:

0006 Indirect address

Special memory bit:

SM1.0 Zero Result

SM1.1 Overflow

Example:

When the value of M0.0 is 1, VD0 moves a bit towards the left and VD10 moves two

bits towards the right.

 164

6.13.4 ROR -B & ROL -B

Input/output Operand Data type

IN VB, IB, QB, MB, SMB, SB, LB, AC,constant, *VD, *LD, *AC Byte

N VB, IB, QB, MB, SMB, SB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC Byte

ROR -B & ROL -B: Instruction rotates the input byte to

the right or to the left n bits and puts the result in the

output byte (OUT). Rotation is cyclic.

If N is greater than or equal to 8, the remainder of N/8 is

the number of rotation bits. If remainder is equal to 0，

Rotation operation is not performed and the value of

SM1.0 is 1.If the rotation operation is performed, the

final rotation bit is copied to overflow bit (SM1.1).

ROR -B & ROL -B operations are not signed.

Error conditions:

0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.

SM1.1 Overflow bit

Example:

When the value of M0.0 is 1, VB0 moves a bit towards the left and VB10 moves a bit

towards the right circularly.

 165

6.13.5 ROR -W & ROL -W

Input/output Operand Data type

IN VW, T, C, IW, QW, MW, SW, SMW, LW, AC, AIW,constant, *VD, *LD, *AC word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, T, C, IW, QW, MW, SW, SMW, LW, AC, *VD, *LD, *AC word

ROR -W & ROL -W: Instruction rotates the input word to

the right or to the left n bits and puts the result in the

output word (OUT). Rotation is cyclic.

If N is greater than or equal to 16, the remainder of N/16

is the number of rotation bits. If remainder is equal to 0，

Rotation operation is not performed and the value of

SM1.0 is 1.If the rotation operation is performed, the

final rotation bit is copied to overflow bit (SM1.1).

ROR -W& ROL -W operations are not signed.

Error conditions:

0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.

SM1.1 Overflow bit

Example:

When the value of M0.0 is 1, VW0 moves a bit towards the left and VW10 moves two

bits towards the right circularly.

 166

6.13.6 ROR -DW & ROL -DW

Input/output Operand Data type

IN VD, ID, QD, MD, SD, SMD, LD, AC, HC,constant, *VD, *LD, *AC Double word

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Byte

OUT VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *LD, *AC Double word

ROR -DW & ROL -DW: Instruction rotates the input

double word to the right or to the left n bits and puts the

result in the output double word (OUT). Rotation is cyclic.

If N is greater than or equal to 32, the remainder of N/32

is the number of rotation bits. If remainder is equal to 0，

Rotation operation is not performed and the value of

SM1.0 is 1.If the rotation operation is performed, the

final rotation bit is copied to overflow bit (SM1.1).

ROR -DW& ROL -DW operations are not signed.

Error conditions:

0006 Indirect address

Special memory bit:

SM1.0 When the value of the loop is zero, SM1.0 is set to 1.

SM1.1 Overflow bit

 Example:

 167

6.13.7 SHRB

Input/output Operand Data type

DATA, S_BIT I, Q, M, SM, T, C, V, S, L Boolean

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC Boolean

SHRB instruction moves the DATA value to the shift

register. S_BIT specifies the lowest bit of the shift register.

N specifies the length of the shift register and the shift

direction (shift plus = N, shift minus = -N). The moved-out

bit is placed in the overflow memory bit (SM1.1). The

instruction is defined by S_BIT and N.

Error conditions:

0006 Indirect address

0091 Operating number is out of range

0092 Count field error

Special memory bit:

SM1.1 Overflow bit

 Example:

When the value of M0.0 is 1，the value of M10.0 is moved to V0.0，the value of V0.0

is moved to V0.1，the value of V0.1 is moved to V0.2，the value of V0.2 is moved to

V0.3，the value of V0.3 is moved to SM1.1.

If N is negative, the shift direction is opposite.

 168

6.14 Character string

6.14.1 String length

Input/output Operand Data type

IN VB,Constant string, LB, *VD, *LD, *AC Character string

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC Byte

STR-LEN: Instruction output “IN” string length.

The longest constant string is 126 bytes.

Error conditions:

0006 Indirect address

0091 Operand range

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

When the string is "123456", the length of the string is 6.

 169

6.14.2 Copy string

Input/output Operand Data type

IN VB, Constant string, LB, *VD, *LD, *AC Character string

OUT VB, *VD, LB, *LD, *AC Character string

STR-CPY: Instruction copies the “IN” string to the “OUT”

string.

The longest constant string is 126 bytes.

Error conditions:

0006 Indirect address

0091 Operand range

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

When M0.0 is 1,string starting with VB0 is copied to the string starting with

VB100 .VB100 storage is an integer 6，VB101 storage is character "1"，VB102 storage

is character "2"，VB103 storage is "3"，VB104 storage is "4"，VB105 storage is "5"，

VB106 storage is "6".

 170

6.14.3 SSTR-CPY

Input/output Operand Data type

Iput VB,Constant string, LB, *VD, *LD, *AC string

INDX, N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VB, *VD, LB, *LD, *AC string

SSTR-CPY: Copy a portion of the input string to the OUT

string. If the value of INDX is X, copy the string starting from

the xth character. The length of the copy string is N.

The longest constant string is 126 bytes.

Error conditions:

0006 Indirect address

0091 Operand range

009B Illegal index

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

Copy VB0 string. Copy the string starting from the second character. The length of the

copy string is 3. The result is placed VB100.

 171

6.14.4 String catenate

Input/output Operand Data type

Input VB,Constant string, LB, *VD, *LD, *AC String

OUT VB, LB, *VD, *LD, *AC String

STR -CAT: Add the string specified by the IN to the string

specified by the OUT.

The longest constant string is 126 bytes.

Error conditions:

0006 Indirect address

0091 Operand range

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

VB100 string is "123". After using the STR -CAT instruction, the VB100 string is

"123abc".

 172

6.14.5 STR -FIND

Input/output Operand Data type

IN1, IN2 VB, constant string, LB, *VD, *LD, *AC string

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte

STR -FIND: The instruction searches for the string IN2 in

the string IN1. Search starts from the OUT-start position.

If you find a string that is the same as the string IN2, the

first character position of the string is written to the OUT.

If you do not find IN2 in IN1, OUT is set to 0. The longest

length of a single constant string is 126 bytes. The longest

comprehensive length of two constant strings is 240

bytes.

Error conditions:

0006 Indirect address

0091 Operand range

009B Illegal index

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example:

 173

6.14.6 Look for the first character in the string

Input/output Operand Data type

IN1, IN2 VB,constant string, LB, *VD, *LD, *AC string

OUT VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *LD, *AC byte

CHR -FIND: The instruction searches for the same character

as the string IN2 in the string IN1.Search starts from the

OUT-start position. If a match character is found, the

character position is written to OUT. If a match character is

not found, the OUT is set to 0.

The longest length of a single constant string is 126 bytes.

The longest comprehensive length of two constant strings is 240 bytes.

Error conditions:

0006 Indirect address

0091 Operand range

009B Illegal index

ASCII constant string data type format：

String is a series of characters; each character is stored as a byte. The first byte of a

string defines the length of the string, that is the number of characters. If a constant

string is entered directly into the program editor or data block, the string must start

and end with double quotation marks ("string constant").

Example：

 174

6.15 Table

6.15.1 Last in first out

Input/output Operand Data type

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word

DATA VW, IW, QW, MW, SW, SMW, LW, AC, T, C, AQW, *VD, *LD, *AC integer

LIFO: Instruction moves the latest (or last) entry in the

table to the output memory address. Remove the last

entry in the table (TBL) and move the value to the location

specified by DATA. Each time the instruction is executed,

the number of entries in the table reduces 1.

Error conditions:

0006 Indirect address

0091 Operand range

SM1.5 Empty list

Special memory bit:

SM1.5 Empty list

Table Format:

VW200 The maximum number of entries

VW202 Entry count

W204 Data 0

VW206 Data 1

VW208 Data 2

 175

For example:

PLC program:

Data block:

Analysis:

When the value of M0.0 is equal to 1, the last entry of the table will be deleted and

the value of the last entry of the table will be moved to “VW300”.

When the value of M0.0 is equal to 1:

VW202=3

VW210 is invalid

VW300=4

 176

6.15.2 FIFO

Input/output Operand Data type

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word

DATA VW, IW, QW, MW, SW, SMW, LW, AC, T, C, AQW, *VD, *LD, *AC integer

FIFO: Remove the first entry in the table (TBL) and move

the value to the location specified by DATA. All other

entries in the table move a location upward. Each time the

instruction is executed, the number of entries in the table

reduces 1.

Error conditions:

0006 Indirect address

0091 Operand range

SM1.5 Empty list

Special memory bit:

SM1.5 Empty list

Table Format:

VW200 The maximum number of entries

VW202 Entry count

W204 Data 0

VW206 Data 1

VW208 Data 2

 177

For example:

PLC program：

Data block:

Analysis：

When the value of M0.0 is equal to 1, the first entry of the table will be deleted and

the value of the first entry of the table will be moved to “VW300”.

When the value of M0.0 is equal to 1:

VW202=3

VW210 is invalid

VW300=1

 178

6.15.3 Add to table

Input/output Operand Data type

DATA VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC integer

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, , *LD *AC word

AD -T- TBL: The instruction adds the word (DATA) to the

table (TBL). The first value in the table is the maximum

length of the table. The second value is the entry count (EC),

it specifies the number of entries in the table. Each time

you add new data to the table, the number of entries adds

1. Table can contain up to 100 entries, not including the first

entry and the second entry.

Error conditions:

0006 Indirect address

0091 Operand range

SM1.4 Table overflow

Special memory bit:

SM1.4 Table overflow

For example:

PLC program：

Data block:

 179

When the value of M0.0 is equal to 1:

The value of VW202 + 1

The Table will have a new entry

The value of the new entry is equal to the value of VW300.

 180

6.15.4 Memory fill

Input/output Operand Data type

IN VW, IW, QW, MW, SW, SMW, LW, T, C, AIW, AC,constant, *VD, *LD, *AC integer

N VB, IB, QB, MB, SB, SMB, LB, AC,constant, *VD, *LD, *AC byte

OUT VW, IW, QW, MW, SW, SMW, LW, T, C, AQW, *VD, *LD, *AC integer

FILL-N: The input value of “IN” is written to the “OUT” N

continuous words.

The range of N is from 1 to 255.

Error conditions:

0006 Indirect address

0091 Operand range

Example:

 181

6.15.5 Table Find

Input/output Operand Data type

TBL VW, IW, QW, MW, SW, SMW, LW, T, C, *VD, *LD, *AC word

PTN VW, IW, QW, MW, SW, SMW, AIW, LW, T, C, AC,constant, *VD, *LD, *AC integer

INDX VW, IW, QW, MW, SW, SMW, LW, T, C, AC, *VD, *LD, *AC word

Table Find instruction: The instruction

searches the same data as “PTN” in the

table. “Table Find” starts form the

entry specified by INDX. If a matching

entry is found, the INDX points to the

entry in the table. To find the next

matching entry, you must add 1 to the

INDX before using the “Table Find”

instruction. If matching entry is not

found, the value of INDX is equal to the number of entries.

For example:

PLC program：

 182

Data block:

When the value of M0.0 is equal to 1:

The table format of the “Table-Find” begins with the entry count. It doesn’t have the

“maximum number of entries”：

VW202 Entry Count

VW204 Data 0

VW206 Data 1

VW208 Data 2

VW210 Data 3

 183

6.16 Timer

6.16.1 Switch on delay timer

Input/output Operand Data type

Txxx constant(T0 -T255) word

IN Enable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC integer

TON: When the value of the input “IN” is equal to 1,

timer starts time. Timer current value of Txxx is the

current time (a multiple of the time base). When the

current value of the timer is equal to the present time

(PT), the value of the timer bit is 1. When the value of the

input “IN” is equal to 0, timer current value is cleared.

TON, TONR and TOF timers have three kinds of resolutions. Each current value is a

multiple of the time base. For example, the number 50 in the 10-millisecond timer

is 500 milliseconds.

Timer range:

Timer number Time base（ms） Time range (s)

T0 1 65.535

T1~T4 10 655.35

T5~T31 100 6553.5

T32 1 65.535

T33~T36 10 655.35

T37~T63 100 6553.5

T64 1 65.535

T65~T68 10 655.35

T69~T95 100 6553.5

T96 1 65.535

T97~T100 10 655.35

 184

T101~T127 100 6553.5

Attention:

1.The value of each timer TXXX is different.

2.The resolution of the timer depends on the time base. For example, the error

range of the 10-millisecond timer is 10 milliseconds.

Example:

 185

6.16.2 TONR

Input/output Operand Data type

Txxx Constant(T0—T255) word

IN Enable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC Integer

TONR: When the value of the input “IN” is equal to 1,

timer starts time. Timer current value of Txxx is the

current time (a multiple of the time base).When the

current value of the timer is equal to the present time (PT),

the value of the timer bit is 1.When the value of the input

“IN” is equal to 0, If the current value of the timer is less

than the present value，timer current value is retained. Otherwise, the current

value of the timer is cleared.

Notes：

You can use TONR to accumulate multiple time intervals.

You can use the "recovery" (R) instruction to recover any timer.

You can only use the "recovery" instruction to recovery the TONR timer.

Example:

 186

6.16.3 Disconnect delay timer

Input/output Operand Data type

Txxx constant(T0—T255) word

IN Enable bit Boolean

PT VW, IW, QW, MW, SW, SMW, LW, AIW, T, C, AC,constant, *VD, *LD, *AC Integer

TOF: When the input is closed, the output will be closed for

a period of time. When the value of IN is 1, the bit of the

timer is 1 Immediately and timer current value is set to 0.

When the value of IN is 0, the timer starts time. When the

current value is equal to the present value, the bit of the

timer is 0.

Notes：

 The value of each timer TXXX is different.

You can use the "recovery" (R) instruction to recover TOF timer.

 Example:

 187

6.16.4 Start time interval

Input/output Operand Data type

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double word

Reads the current value of the built-in 1 ms counter and

stores it in the OUT.

 Example:

The value of VD4 is the conduction time of M0.0

 188

6.16.5 Calculation interval time

Input/output Operand Data type

IN VD, ID, QD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC Double word

OUT VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC Double word

Calculates the time difference between the current time

and the time provided by the IN, and stores the time

difference in the OUT.

 Example:

The value of VD4 is the conduction time of M0.0

 189

6.17 Pulse train output

6.17.1 Pulse output

Input/output Operand Data type

F ID, QD, AID, AQD, MD, VD, HC, SMD, LD, *MD, *VD, *LD Double integer

N ID, QD, AID, AQD, MD, VD, HC, SMD, LD, *MD, *VD, *LD Double integer

OUT QX.X Bit

PLSY: When the value of the enable bit is 1, Instruction issues

N pulses. The pulse frequency is F.

PLSY instructions:

1.The frequency range of F is 10 ~ 40K (Hz). Different models have different

frequency ranges. Please set the frequency according to the specific model.

Frequency F can be changed in the process of pulse transmission, the sending pulse

frequency is also changed.

2.The range of N is 0 ~ 2147483647. If N is 0, the number of pulses is ignored. When

n is equal to 0 and the enable bit is 1, the PLSY instruction will send pulses

ceaselessly.

When the pulse is sending, changing the value of N does not work. N changes

will be in effect after the next pulse.

3.If the value of the enable bit is 0, the pulse will stop sending. When the enable bit

is changed from 0 to 1, PLSY instruction sends new pulses and ignores the

interrupted pulses before.

4.The duty ratio of pulse transmission is 50%ON, 50%OFF.The transmission of

the pulse is completely processed by the hardware interrupt, which is not

 190

affected by the scan period.

For example:

Attention:

Output point must be high speed output point.

For different PLC, the addresses of high-speed output points may be different.

6.17.2 Pulse width modulation

Input/output Operand Data type

% IW, QW, AIW, AQW, MW, VW, T, C, SMW, LW, *MD, *VD, *LD Double word

T IW, QW, AIW, AQW, MW, VW, T, C, SMW, LW, *MD, *VD, *LD Double word

OUT Q Bit

Pulse width modulation (PWM) instruction initializes

the PWM hardware and sends high speed pulses.

The input value of "%" =conduction time/period.

The input value of "T" is the period of the pulse

PWM description:

1.The unit of T is 1ms.

2.If the input value of "%" is 0, then the instruction does not output the pulse. If the

input value of "%" is equal to 100, the value of output pulse is always 1.

3.When the pulse is sending, you can change the value of “%”and period of the

pulse. Then the value of “%” and period of pulse will change.

4.If the value of enable bit is 0, pulse sending will stop. When the enable bit is

 191

changed from 0 to 1，PWM instruction restarts sending pulse.

For example:

The pulse period is 500 ms, the conduction time is 300 ms.

Attention:

Output point must be high speed output point.

For different PLC, the addresses of high-speed output points may be different.

6.18 Subroutine

6.18.1 Using subroutine

Subroutine is used for program partitioning. When the main program calls

subroutine and performs the subroutine, subroutine executes all instructions to the

end. Then, the system returns to the main program.

Subroutine is used for program partitioning. It helps to read and manage programs. It

also helps to debug and maintain programs. You can use PLC more effectively by

using subroutine. Because all of the subroutine blocks are not scanned when they

are not called.

If the subroutine only references parameters and local memory, then the subroutine

can be moved. In order to move the subroutine, you can’t use any global variables /

symbols (I, Q, M, SM, AI, AQ, V, T, C, S, AC absolute address). If the subroutine does

not call parameters (IN, OUT, or IN_OUT) or only uses local variables, you can export

the subroutine and import it into another project.

Conditions of using subroutine:

 192

1.Create a subroutine

2.Define parameters in the local variable table.

3.Call subroutine from the appropriate POU (from the main program or another

subroutine)

Using subroutine does not save or restore the accumulator.

6.18.2 Using parameters to call subroutine

Subroutine may contain the transfer parameters. The parameter is defined in the

local variable table of the subroutine. Parameters must have a symbol name (up to

23 characters), a variable type, and a data type. Each subroutine can be set up to 16

IN/OUT parameters.

Local variable table has 4 types of variables. They are IN, IN-OUT, OUT and TEMP.

Parameter type and description

IN Parameters are transferred to the subroutine. If the parameter is a direct

address (e.g. VB10), the specified location value is transferred to the subroutine. If

the parameter is an indirect address (such as *AC1), the specified location value is

transferred to the subroutine. If the parameter is the data constant (16#1234) or

address (&VB100)，constants or addresses are transferred to the subroutine.

IN_OUT The specified location value is transferred to the subroutine. The result of

subroutine operation is transferred to the specified same location. This parameter

does not allow to use constants (such as 16#1234) and addresses (e.g.&VB100).

OUT The result of subroutine operation is transferred to the specified location.

Constants (such as 16#1234) and addresses (e.g. &VB100) are not allowed to be used

as output.

 193

TEMP Any local memory which is not used as a transfer parameter can’t be used

for temporary storage in subroutine.

Parameter data type Illustration

Boolean It is used for unit input and output.

Byte, word, double word Input or output parameters without symbols.

Integer, double integer Input or output parameters with symbols.

Real number It identifies single precision floating point values.

String This data type is used as a four-byte pointer to the string.

Enable bit Boolean enable bit can be used only for bit. It can be used as

 input.

6.18.3 How to set up a subroutine

The following methods can be used to establish a subroutine:

1.Project manager→program block→Right click program block→Insert→subroutine

2.Project manager→program block→SBR-0→Right click SBR-0→Insert→subroutine

You can use the local variable table to define the parameters of the subroutine.

Notes：

1.Please remember that each POU in the program has an independent local variable

table. In the A subroutine, you can only use the A local variable table to define

variables.

2.Each subroutine can be set up to 16 IN/OUT parameters. If the number of

parameters is greater than 16, the program will generate errors.

3.You can write a subroutine in the program edit window.

4.Click on the label of POU that you want to edit. SO, you can edit the POU in the

program edit window.

Editor inserts POU termination instruction automatically. (END for main，RET for SBR，

RETI for INT).

 194

6.18.4 How to call a subroutine

You can call a subroutine from the main program, another subroutine or an interrupt

routine. You can’t call the subroutine from the subroutine itself.

In LAD, the subroutine generates a block instruction. You can call the block

instruction to call the subroutine.

Steps to call a subroutine:

1. In program edit window, place the cursor on the position where you want to place

the subroutine.

2. Instructions→Subroutine, then select the subroutine that you need. Double click

on it.

Example：Four arithmetic operations

Main program:

Subroutine:

 195

 196

7.PLC storage area

7.1 Storage area types and properties

Region Illustration Bit Byte Word Double

Word

Retain Force

I Discrete

input and

image

register

Read /

write

Read /

write

Read /

write

Read /

write

NO YES

Q Discrete

output and

image

register

Read /

write

Read /

write

Read /

write

Read /

write

NO YES

M Internal

memory bit

Read /

write

Read /

write

Read /

write

Read /

write

YES YES

SM Special

memory bit

（ SM0 -

SM29

Read-only)

Read /

write

Read /

write

Read /

write

Read /

write

NO NO

V Variable

memory

Read /

write

Read /

write

Read /

write

Read /

write

YES YES

T Timer

current value

and timer bit

Read /

write （ T

bit）

NO Read /

write （ T

Current

value）

NO T

current

value

YES

T bit

NO

C Counter

current value

and counter

bit

Read /

write （ C

bit）

NO Read /

write （ C

current

value）

NO C

current

value

YES

C bit

NO

HC Current

value of high

speed

counter

NO NO NO read-only NO NO

AI Analog input

NO NO Read-only NO NO YES

AQ Analog

output
NO NO write only NO NO YES

AC Accumulator

register
NO Read /

write

Read /

write

Read /

write
NO NO

L Local

variable

memory

Read /

write

Read /

write

Read /

write

Read /

write
NO NO

 197

S SCR Read /

write

Read /

write

Read /

write

Read /

write
NO NO

7.2 Direct and indirect addressing

When you write the program, you can use the three ways to address instruction:

1.Direct addressing

2.Symbol addressing

3.indirect addressing

Direct addressing

PLC can directly specify the memory area, size, and location;

In order to read/write a bit in the memory area, you need to specify the address. The

address Includes memory area identifier, byte address, a period and number.

Example:

Specifying byte、word and double word addresses are similar to specifying bit

address.

 198

Example:

Symbolic addressing

Symbol addressing consists of letters, numbers and characters.

You can set the symbol of address by the following steps:

You can enter “start” as the address of I0.0

Indirect addressing

Indirect addressing uses pointer to access the data of memory. Pointer is a double

word. It contains the address of another memory location. Only V memory location, L

memory location or register accumulator (AC1, AC2, AC3) can be used as pointers.

PLC allows the pointer to access the following memory area：I, Q, V, M, S, T, C, T and

 199

C can only use the current value.

Pointer consists of memory location and symbol "&”.

To specify the operand be a pointer, you should input an asterisk (*) in front of the

operand.

Example: The values stored in the VB200 and VB201 are moved to AC0.

As shown in the figure below, you can change the pointer value. Because the pointer

is a 32-bit value, you should use the double word instruction to modify the pointer

value.

Prompt：

If you use the pointer to execute the byte operation, the minimum pointer interval is

1.

If you use the pointer to execute the word operation, the minimum pointer interval is

2.

If you use the pointer to execute the double word operation, the minimum pointer

 200

interval is 4.

If the value of the pointer is greater than the maximum value of the V memory,

program will generate errors.

The current value of the timer and counter is 16 bits, so the minimum pointer

interval is 2.

7.3 Bit, byte, word and double word access

Bit access

If you want to access a bit, you need to specify the address of the bit. Address

contains region identifier and byte number. Zero is the first address of all data areas.

The decimal point is used to separate the number of bytes and the number of bits.

The range of the number of the bits is 0~7. For example: M0.0

Byte, word and double word access

If you want to access byte, word or double word, you need to specify the address.

Address contains a region identifier, a letter and an address number.

For example:

VB100 Access V memory address byte 100

VW100 Access V memory address bytes 100 and 101

VD100 Access V memory address bytes 100, 101, 102, and 103

7.4 Memory address range

Bit Byte Word Double Word

I I0.0~I31.7 IB IB0~IB31 IW IW0~IW3

0

ID

ID0~ID28

Q Q0.0~Q31

.7

QB QB0~QB3

1

QW QW0~QW

30

QD QD0~QD

28

M M0.0~31. MB MB0~MB MW MW0~M MD MD0~MD

 201

7.5 Data type

Data Type Data width Range

BOOL 1 0~1

BYTE 8 16#00~16#FF

WORD 16 16#0000~16#FFFF

DWORD 32 16#00000000~16#FFFFFFFF

SINT 8 -128~127

7 31 W30 28

S S0.0~S31.

7

SB SB0~SB31 SW SW0~SW

30

SD SD0~SD2

8

SM SM0.0~S

M551.7

SMB SMB0~SM

B551

SMW SMW0~S

MW550

SMD SMD0~S

MD548

T T0~T255 T T0~T255

C C0~C255 C C0~C255

V V0.0~V81

91.7

VB VB0~VB8

191

VW VW0~VW

8190

VD VD0~VD8

188

L L0.0~L63.

7

LB LB0~LB63 LW LW0~LW6

2

LD LD0~LD6

0

 AC AC0~AC3 AC AC0~AC3 AC AC0~AC3

 HC HC0~HC1

5

 202

INT 16 -32768~32767

DINT 32 -2147483648~2147483647

USINT 8 0~255

UINT 16 0~65535

UDINT 32 0~4294967295

7.6 Constant

 Unsigned integer range Signed integer range

Data size： Decimal digit：Hexadecimal digit： Decimal digit： Hexadecimal digit：

B（byte） 0~255 0~FF -128 ~+127 80~7F

W（word） 0~65535 0~FFFF -32768~+32767 8000~7FFF

D（double word)0~4294967295 0~FFFF FFFF -2147483648 8000 0000~

 ~+2147483647 7FFF FFFF

Data size： Decimal numbers (positive) Decimal number (negative)

D（double word) +1.175495E-38~+3.402823E+38 -1.175495E-38~-3.402823E+38

 203

 8.Assignment and function of SM special storage area

SMB0

Always_On SM0.0 Always ON

First_Scan_On SM0.1 ON for the first scan cycle only

Clock_60s SM0.4 30 seconds OFF,30 seconds ON

Clock_1s SM0.5 0.5 second OFF,0.5 second ON

SMB1

Result_0 SM1.0
Set to 1 by the execution of certain instructions when the

operation result = 0

Overflow_Illegal SM1.1
Set to 1 by exec. of certain instructions on overflow or illegal

numeric value.

Neg_Result SM1.2 Set to 1 when a math operation produces a negative result

Divide_By_0 SM1.3 Set to 1 when an attempt is made to divide by zero

Table_Overflow SM1.4
Set to 1 when the Add to Table instruction attempts to overfill

the table

Table_Empty SM1.5
Set to 1 when a LIFO or FIFO instruction attempts to read

from an empty table

Not_BCD SM1.6
Set to 1 when an attempt is made to convert a non-BCD value

to a binary value

Not_Hex SM1.7
Set to 1 when an ASCII value cannot be converted to a valid

hexadecimal value

The PLC variables address of LCD keys:

F1 → SM191.0

F2 → SM191.1

F3 → SM191.2

F4 → SM191.3

ESC → SM190.0

OK → SM190.1

UP → SM190.2

DOWN → SM190.3

LEFT → SM190.4

RIGHT → SM190.5

When the value of SM192.0 is equal to 1, LCD will be bright.

When the value of SM192.0 is equal to 0, LCD will be dark.

SMW22-SMW26 Scan time (millisecond)

SMW22 Scan time of the last scan.

SMW24 Minimum scan time

SMW26 Maximum scan time

 204

Newly added special registers and their functions

SMB10 Adjust the contrast of LCD display. (value range: 0~25)

SMB192 Control the LCD backlight on or off. (0: off, 1: always on)

SMB12

SMB13

Used to indicate the connection status of the expansion module.

SM12.0 - SM12.7: The status of the bit corresponds to the connection

status of the expansion modules with station address 1 to 8.

SM13.0 - SM13.7: The status of the bit corresponds to the connection

status of the expansion modules with station address 9 to 16.

‘0’ means the expansion is not connected/communicating with the CPU,

‘1’ means the expansion is connected/communicating with the CPU

normally.

SMB14

Working status of built-in SD:

0: There are no errors.

1: Failed to open file.

2: Update file new content error, write failure.

3：Exceeds the maximum allowed file size

4：Insufficient memory, write failed

60：No SD card detected

* Note that the functions in this table have requirements on the PLC firmware

version.

 205

9.xladder communication

9.1 PLC basic introduction of network communication

Rievtech PLC is designed to solve your communications and networking needs. It

supports both simple networks and complex networks. xladder makes it simple to set

up and configure your network.

Master slave network definition

Rievtech PLC supports master slave network. It can be used as the master station or

the slave station in the network. xladder is always used as the master station.

Master station: The master station can send a request to another device in the

network. The master station can also respond to requests from other master stations

in the network.

Slave station: The device which is configured to be the slave station can only respond

to requests from a master station. The slave station will not take the initiative to

issue a request.

The concept of baud rate and network address

The speed of transmission of data in the network is called the baud rate. Units are

kbaud and Mbaud. For example, 19.2 kbaud indicates that 19200 bits are transmitted

per second.

Each device must be the same baud rate in the network. So, the communication

speed of the network is decided by the minimum baud rate of equipment.

The range of Rievtech PLC baud rate is 1200 bps~115200 bps. The default value is

9600bps.

Network address is a unique number that you specify for each device on the network.

Network address ensures that data is delivered to the correct device. The range of

PLC network addresses is 0~255.

Set the baud rate and network address of xLadder

Open the communication in project management:

 206

You can set the station number, port, baud rate, parity and stop bit of xladder. The

default station number is 0. The default baud rate is 9600 bps.

Set the baud rate and network address of Rievtech PLC

Open system block in project management

You can set the station number, baud rate, data bits, parity bit and stop bit of PLC.

 207

Attention: Only when xLadder software station number is equal to 0 or PLC station

number, you can download the program to PLC.

9.2 Rievtech PLC communication

Rievtech PLC support free port communication, MODBUS communication.

Free port communication:

Free port communication is a half-duplex communication based on RS-485

communication. Users can make their own communication protocol in free port

communication. The third-party devices mostly support RS-485 communication.

The core of the free port communication is receiving and sending instructions.

RS-485 communication can’t receive and send data at the same time. The RS-485

communication format includes a start bit, 7 or 8 bit characters, a parity bit, and a

stop bit.

Free port communication baud rate can be set to 1200, 2400, 4800, 9600, 19200,

38400, 57600 or 115200. Devices that meet the above conditions can communicate

with PLC. Free port mode has great flexibility.

Free port instructions:

UFP_RCV

UFP_RCV: Receive data instruction

⚫ PORT: Communication port.

⚫ TBL: Configuration table，If the input is MB200.

 MB200 is the configuration byte:

 （Instruction output）M200.0 Communication preparation

 （Instruction output）M200.1 Communication completion

 （Instruction output）M200.2 Communication error

 （Instruction input）M200.3 Send CRC check

 （Instruction input）M200.4 Send CRC check

 208

 （Instruction input）M200.5 Receive CRC check

 （Instruction input）M200.6 Receive CRC check

 （Instruction output）MB201 Error number：0indicates no

error.

⚫ RCV: receive data, If the input is MB400:

 （Instruction input）MW400: Receive data FIFO buffer size

(byte unit)

 （Instruction output）MW402:The size of the received data

(in bytes)

 （Instruction output）MB404 ~ … receive data.

UFP_XMT

UFP_XMT: Send data instruction

⚫ PORT Communication port.

⚫ TBL: Configuration table，If the input is MB200.

 MB200 is the configuration byte:

 （Instruction output）M200.0 Communication preparation

 （Instruction output）M200.1 Communication completion

 （Instruction output）M200.2 Communication error

 （Instruction input）M200.3 Send CRC check

 （Instruction input）M200.4 Send CRC check

 （Instruction input）M200.5 Receive CRC check

 （Instruction input）M200.6 Receive CRC check

 （Instruction output）MB201 Error number：0indicates no

error.

⚫ XMT Send data FIFO, If the input is MB400:

 （Instruction input）MW400 Sending data FIFO buffer size

 209

(byte unit)

 （Instruction input）MW402 Sending data size (byte)

 （Instruction input）MB404 ~ … Send data.

UFP_QAR

UFP_QAR: Sending and receiving data instruction

⚫ PORT Communication port.

⚫ TBL: Configuration table，If the input is MB200.

 MB200 is the configuration byte:

 （Instruction output）M200.0 Communication preparation

 （Instruction output）M200.1 Communication completion

 （Instruction output）M200.2 Communication error

 （Instruction input）M200.3 Send CRC check

 （Instruction input）M200.4 Send CRC check

 （Instruction input）M200.5 Receive CRC check

 （Instruction input）M200.6 Receive CRC check

 （Instruction output）MB201 Error number：0indicates no

error.

⚫ XMT: Send data FIFO, If the input is MB300:

 （Instruction input）MW300 Sending data FIFO buffer size

(byte unit)

 （Instruction input）MW302 Sending data size (byte)

 （Instruction input）MB304 ~ … Send data.

⚫ RCV receive data FIFO, If the input is MB400:

 （Instruction input）MW400 Receive data FIFO buffer size

(byte unit)

 （Instruction output）MW402 The size of the received data

(byte unit)

 210

 （Instruction output）MB404 ~ … Receive data.

UFP_RCV、UFP_XMT、UFP_QAR error numbers:

⚫ 1 Port doesn’t exist

⚫ 2 Port isn’t enabled

⚫ 3 Communication task queue is full

⚫ 4 Table error

⚫ 5 Sent data error

⚫ 6 Timeout

⚫ 7 Received data error

⚫ 8 Receive data check error

The use of free port communication instructions will be illustrated with examples

in the additional chapter.

MODBUS communication protocol

MODBUS protocol is a common language used in electronic controllers. Different devices can

communicate with each other by using the MODBUS communication protocol. It has become a

general industrial standard. You can use it to connect different devices.

This protocol defines a message structure, no matter what network they use to communicate. It

describes the process of controller requesting to access other devices. It has formulated message

domain structure and the common format of the content.

MODBUS network protocol determines that each controller should know its address. It identifies

the messages sent from different addresses and decides what action to take. The controller

generates feedback information, the format of the information is the information format of

MODBUS. It is issued through the MODBUS protocol.

MODBUS address usually contains data type and offset. MODBUS address contains a total of 5

characters. The first character represents the data type and the other four characters represent

the correct values in the data type.

MODBUS addressing:

 211

0XXXX are discrete outputs

1XXXX are discrete inputs

3XXXX are analog inputs

4XXXX are hold registers

You can use “MODBUS address query” to query the MODBUS address of the variable，

Steps are as follows:

Menu bar→PLC→MODBUS address query

For example: Query the MODBUS address of Q0.0:

MODBUS instructions:

 212

UMB03

Read more than one hold registers

⚫ EN：enable or not enable

⚫ TBL: Configuration table, If the input is MB200:

 MB200 is the configuration word

 （Instruction Output ）M200.0 Communications have been

queued

 （Instruction Output ）M200.1 Communication completion

 （Instruction Output）M200.2 Communication error

 （Instruction Output）MB201 is error number.0 indicates no

error.

⚫ SLA：MODBUS slave address

⚫ ADDR： The offset of hold register（The offset of 4X）

⚫ CNT： Number of hold register

⚫ LDAT： Store the data which was written from slave station

UMB04

Read the input register

⚫ EN：enable or not enable

⚫ TBL: Configuration table, If the input is MB200:

 MB200 is the configuration word

 （Instruction Output ）M200.0 Communications have been

queued

 （Instruction Output ）M200.1 Communication completion

 （Instruction Output）M200.2 Communication error

 （Instruction Output）MB201 is error number.0 indicates no

error.

⚫ SLA: MODBUS slave address

⚫ ADDR: The offset of input register. (The offset of 3x)

⚫ CNT：Number of input registers.

⚫ LDAT: Store the data which was written from slave station

 213

UMB06

Write a single hold register

⚫ EN：enable or not enable

⚫ TBL: Configuration table, If the input is MB200:

 MB200 is the configuration word

 （Instruction Output ）M200.0 Communications have been

queued

 （Instruction Output ）M200.1 Communication completion

 （Instruction Output）M200.2 Communication error

 （Instruction Output）MB201 is error number.0 indicates no

error.

⚫ SLA：MODBUS slave address

⚫ ADDR：The offset of hold register（The offset of 4X）

⚫ LDAT：Store the data which will be written to the slave

station.

UMB16

Write more than one hold registers

⚫ EN：enable or not enable

⚫ TBL: Configuration table, If the input is MB200:

 MB200 is the configuration word

 （Instruction Output ）M200.0 Communications have been

queued

 （Instruction Output ）M200.1 Communication completion

 （Instruction Output）M200.2 Communication error

 （Instruction Output）MB201 is error number.0 indicates no

error.

⚫ SLA：MODBUS slave address

⚫ ADDR： The offset of hold register（The offset of 4X）

⚫ CNT： Number of hold register

LDAT：Store the data which will be written to the slave station.

The use of MODBUS communication instructions will be illustrated with examples

in the additional chapter.

 214

9.3 Optimize network performance

The following factors will affect the performance of the network（The baud rate and

the master station produce the greatest impact to the performance of the network)：

Baud rate: It determines the speed of network communication.

Number of master stations on the network: To enhance network performance, you

can reduce the number of main stations on the network. Each station on the network

will increase the additional requirements of the network.

Select master station and slave station addresses: The master station address should

be continuous. When there is a spacing address between the master stations, the

master station will check the spacing address ceaselessly and see if there is another

master station waiting to be on line. So the master station spacing address will

increase the additional requirements of the network. You can set the slave address to

any value. But slave station address can’t be placed between the master station

address. Or it will increase the additional requirements of the network.

10.Additional chapter

10.1 How to switch PLC mode

How to switch between FBD and LADDER

1，FBD → Ladder

The default factory system of RIEVTECH-PLC is FBD.

As the CPU chips used by each series of products are different, there will be three

methods to switch from FBD mode to ladder mode.

There are situations

 Applicable Model

 PR- 2DC-DA-R, PR- 2AC-R, SR- 2AC-R, SR- 2DC-DA-R

 2 PR- , 8, 2 series, EXM- 2DC-DA-RT-WIFI

 PR- 2N, 8N, 2 N series

 215

(1) PR-12DC-DA-R, PR-12AC-R, SR-12AC-R, SR-12DC-DA-R

These types of PLC need to use firmware update package to burn the firmware of the

corresponding mode.

 . Download the firmware update package for the corresponding series.

The firmware update package on the REVTECH website

https www.rievtech.com download.html

PR- 2 Series

SR- 2 Series

Note The suffi date of the update package file name will change accordingly.

2. After the download is complete, press it into a folder.

The following takes the PR-12 series as an example. The PR-12 series updates the firmware via

the serial port, and the SR-12 series updates the firmware via Ethernet.

E ecute the e e file in the folder.

 . Select the com port of the programming cable you need to set the BPS of PLC com0 to

9 00, RTU , and then click the ‘Open’ button.

See below

https://www.rievtech.com/download.html

 216

 . Then click the ‘Start’ button, and the following prompt will pop up

 . Select ‘Update to LAD Mode’ and click the ‘OK’ button.

Wait for the progress bar in the figure below to complete.

 . After the update is completed, the following prompt will appear.

 217

7, Power off the PR- 2DC-DA-R and then power on and restart, and the LCD will display

LADDER MODE

 RUN

Now this PLC works in ladder mode.

(2) PR-14, 18, 24 series, EXM-12DC-DA-RT-WIFI

 . Set the PLC to the STOP state on the LCD panel, the steps are as follows

2. Open the Ladder software and select the com port of the programming cable, as

shown below

 218

 . Choose the correct PLC model, such as PR- DC-DA-R. Then click the ‘Download’

button in the picture below.

 . Then a series of prompt windows will pop up as follows.

 219

 . Then, the following characters will be displayed on the LCD

LADDER MODE

 RUN

This PLC has successfully switched to ladder mode.

(3) PR-12N, 18N, 26N series

These models do not require mode conversion, and programs in Rievtech software and

 Ladder software can be downloaded directly to the PLC.

2，Ladder → FBD

 The following method is applicable to PR- 2, , 8,2 series, EXM- 2DC-DA-R-T-WIFI.

 . Open the Rievtech software and select the COM port of the programming cable, as

shown below

 220

After the connection is successful, the gray invalid tool button on the Rievtech software

becomes valid.

2. Follow the path in the figure below to find the ‘Set PLC to FBD Mode’ menu, and then

click.

 221

Then the following picture prompt will pop up.

At this time, the PLC will automatically restart, and it will run in FBD mode after restarting.

10.2 How to obtain the firmware version number of the PLC

 . Configure the parameters in ‘Communication’ so that Ladder can communicate with

PLC. Ladder can communicate with PLC via serial port or Ethernet.

 222

2. Click the ‘Connect’ button in the toolbar.

 . Use the ‘Information’ menu under ‘PLC’ to read the firmware version number of the PLC

in Ladder mode.

 223

10.3 Value range of analog quantity:

0~10V → 0~1000

0~20mA →0~1000

4~20mA →0~1000

-50℃~200℃→-500~2000

When you use the PT100/PT1000 module，The value range of the analog quantity is

-500~2000.It corresponds to the temperature that is -50℃~200℃.

 224

10.4 Extension module address

10.4.1 Digtal Input addressing

Divided into the following two situations:

1. Common I/O expansion, such as PR-E-16DC-DA-R①
 .

2. Pure input expansion, such as PR-E-DC-16IN②

 . The PR12N,18N,26N PLCs with firmware

version number >=V150, the version of PR-18DC-DA-R >=10 supports these newly added
addresses.

3. SR-12 supports 3 expansion modules

 Input FBD LADDER

LAD MODBUS ADD.

Modbus code: 02

CPU

I1 -- I8

I9 -- IG

I0.0 – I0.7

I1.0 – I1.7

0 -- 7

8 -- 15

EXT.1

8DI①
 I1 – I8 I2.0 -- I2.7 16 -- 23

16DI②

I1 – I8

I9 -- IG

I21.0 -- I21.7 or I2.0 -- I2.7

I22.0 -- I22.7

5800 - 5807 or 16 - 23

5808 - 5815

EXT.2

8DI I1 – I8 I3.0 -- I3.7 24 -- 31

16DI

I1 – I8

I9 -- IG

I23.0 -- I23.7 or I3.0 -- I3.7

I24.0 -- I24.7

5816 - 5823 or 24 - 31

5824 - 5831

EXT.3

8DI I1 – I8 I4.0 -- I4.7 32 -- 39

16DI

I1 – I8

I9 -- IG

I25.0 -- I25.7 or I4.0 -- I4.7

I26.0 -- I26.7

5832 - 5839 or 32 -- 39

5840 - 5847

EXT.4

8DI I1 – I8 I5.0 -- I5.7 40 -- 47

16DI

I1 – I8

I9 -- IG

I27.0 -- I27.7 or I5.0 -- I5.7

I28.0 -- I28.7

5848 -5855 or 40 - 47

5856 - 5863

EXT.5

8DI I1 – I8 I6.0 -- I6.7 48 -- 55

16DI

I1 – I8

I9 -- IG

I29.0 -- I29.7 or I6.0 -- I6.7

I30.0 -- I30.7

5864 - 5871 or 48 - 55

5872 - 5879

EXT.6

8DI I1 – I8 I7.0 -- I7.7 56 -- 63

16DI

I1 – I8

I9 -- IG

I31.0 -- I31.7 or I7.0 -- I7.7

I32.0 -- I32.7

5880 - 5887 or 56 - 63

5888 - 5895

EXT.7

8DI I1 – I8 I8.0 -- I8.7 64 -- 71

16DI

I1 – I8

I9 -- IG

I33.0 -- I33.7 or I8.0 -- I8.7

I34.0 -- I34.7

5896 - 5903 or 64 - 71

5904 - 5911

EXT.8 8DI I1 – I8 I9.0 -- I9.7 72 -- 79

 225

16DI

I1 – I8

I9 -- IG

I35.0 -- I35.7 or I9.0 -- I9.7

I36.0 -- I36.7

5912 - 5919 or 72 - 79

5920 - 5927

EXT.9

8DI I1 – I8 I10.0 -- I10.7 80 -- 87

16DI

I1 – I8

I9 -- IG

I37.0 -- I37.7 or I10.0 -- I10.7

I38.0 -- I38.7

5928 - 5935 or 80 - 87

5936 - 5943

EXT.10

8DI I1 – I8 I11.0 -- I11.7 88 -- 95

16DI

I1 – I8

I9 -- IG

I39.0 -- I39.7 or I11.0 -- I11.7

I40.0 -- I40.7

5944 - 5951 or 88 - 95

5952 - 5959

EXT.11

8DI I1 – I8 I12.0 -- I12.7 96 -- 103

16DI

I1 – I8

I9 -- IG

I41.0 -- I41.7 or I12.0 -- I12.7

I42.0 -- I42.7

5960 - 5967 or 96 - 103

5968 - 5975

EXT.12

8DI I1 – I8 I13.0 -- I13.7 104 -- 111

16DI

I1 – I8

I9 -- IG

I43.0 -- I43.7 or I13.0 -- I13.7

I44.0 -- I44.7

5976 - 5983 or 104 - 111

5984 - 5991

EXT.13

8DI I1 – I8 I14.0 -- I14.7 112 -- 119

16DI

I1 – I8

I9 -- IG

I45.0 -- I45.7 or I14.0 -- I14.7

I46.0 -- I46.7

5992 - 5999 or 112 - 119

6000 - 6007

EXT.14

8DI I1 – I8 I15.0 -- I15.7 120 -- 127

16DI

I1 – I8

I9 -- IG

I47.0 -- I47.7 or I15.0 -- I15.7

I48.0 -- I48.7

6008 - 6015 or 120 - 127

6016 - 6023

EXT.15

8DI I1 – I8 I16.0 -- I16.7 128 -- 135

16DI

I1 – I8

I9 -- IG

I49.0 -- I49.7 or I16.0 -- I16.7

I50.0 -- I50.7

6024 - 6031 or 128 - 135

6032 - 6039

EXT.16

8DI I1 – I8 I17.0 -- I17.7 136 -- 143

16DI

I1 – I8

I9 -- IG

I51.0 -- I51.7 or I17.0 -- I17.7

I52.0 -- I52.7

6040 - 6047 or 136 - 143

6048 - 6055

10.4.2 Digtal Output addressing

Divided into the following two situations:

1. Common I/O expansion, such as PR-E-16DC-DA-R①
 .

2. Pure output expansion, such as PR-E-DC-16DO②

 . The PR12N,18N,26N PLCs with firmware

version number >=V150, the version of PR-18DC-DA-R >=10 supports these newly added
addresses.

 226

3. SR-12 supports 3 expansion modules

 Output FBD LADDER

LAD MODBUS ADD.

Modbus code: 01/05(15)

CPU

Q1 -- Q8

Q9 -- QA

Q0.0 -- Q0.7

Q1.0 -- Q1.1

0 -- 7

8 -- 9

EXT.1

8DO①
 Q1 -- Q8 Q2.0 -- Q2.7 16 -- 23

16DO②

Q1 -- Q8

Q9 -- QG

Q2.0 -- Q2.7

Q21.0 -- Q21.7

16 -- 23

168 -- 175

EXT.2

8DO Q1 -- Q8 Q3.0 -- Q3.7 24 -- 31

16DO

Q1 -- Q8

Q9 -- QG

Q3.0 -- Q3.7

Q22.0 -- Q22.7

24 -- 31

176 -- 183

EXT.3

8DO Q1 -- Q8 Q4.0 -- Q4.7 32 -- 39

16DO

Q1 -- Q8

Q9 -- QG

Q4.0 -- Q4.7

Q23.0 -- Q23.7

32 -- 39

184 -- 191

EXT.4

8DO Q1 -- Q8 Q5.0 -- Q5.7 40 -- 47

16DO

Q1 -- Q8

Q9 -- QG

Q5.0 -- Q5.7

Q24.0 -- Q24.7

40 -- 47

192 -- 199

EXT.5

8DO Q1 -- Q8 Q6.0 -- Q6.7 48 -- 55

16DO

Q1 -- Q8

Q9 -- QG

Q6.0 -- Q6.7

Q25.0 -- Q25.7

48 -- 55

200 -- 207

EXT.6

8DO Q1 -- Q8 Q7.0 -- Q7.7 56 -- 63

16DO

Q1 -- Q8

Q9 -- QG

Q7.0 -- Q7.7

Q26.0 -- Q26.7

56 -- 63

208 -- 215

EXT.7

8DO Q1 -- Q8 Q8.0 -- Q8.7 64 -- 71

16DO

Q1 -- Q8

Q9 -- QG

Q8.0 -- Q8.7

Q27.0 -- Q27.7

64 -- 71

216 -- 223

EXT.8

8DO Q1 -- Q8 Q9.0 -- Q9.7 72 -- 79

16DO

Q1 -- Q8

Q9 -- QG

Q9.0 -- Q9.7

Q28.0 -- Q28.7

72 -- 79

224 -- 231

EXT.9

8DO Q1 -- Q8 Q10.0 -- Q10.7 80 -- 87

16DO

Q1 -- Q8

Q9 -- QG

Q10.0 -- Q10.7

Q29.0 -- Q29.7

80 -- 87

232 -- 239

EXT.10

8DO Q1 -- Q8 Q11.0 -- Q11.7 88 -- 95

16DO
Q1 -- Q8 Q11.0 -- Q11.7 88 -- 95

 227

Q9 -- QG Q30.0 -- Q30.7 240 -- 247

EXT.11

8DO Q1 -- Q8 Q12.0 -- Q12.7 96 -- 103

16DO

Q1 -- Q8

Q9 -- QG

Q12.0 -- Q12.7

Q31.0 -- Q31.7

96 -- 103

248 -- 255

EXT.12

8DO Q1 -- Q8 Q13.0 -- Q13.7 104 -- 111

16DO

Q1 -- Q8

Q9 -- QG

Q13.0 -- Q13.7

Q32.0 -- Q32.7

104 -- 111

256 -- 263

EXT.13

8DO Q1 -- Q8 Q14.0 -- Q14.7 112 -- 119

16DO

Q1 -- Q8

Q9 -- QG

Q14.0 -- Q14.7

Q33.0 -- Q33.7

112 -- 119

264 -- 271

EXT.14

8DO Q1 -- Q8 Q15.0 -- Q15.7 120 -- 127

16DO

Q1 -- Q8

Q9 -- QG

Q15.0 -- Q15.7

Q34.0 -- Q34.7

120 -- 127

272 -- 279

EXT.15

8DO Q1 -- Q8 Q16.0 -- Q16.7 128 -- 135

16DO

Q1 -- Q8

Q9 -- QG

Q16.0 -- Q16.7

Q35.0 -- Q35.7

128 -- 135

280 -- 287

EXT.16

8DO Q1 -- Q8 Q17.0 -- Q17.7 136 -- 143

16DO

Q1 -- Q8

Q9 -- QG

Q17.0 -- Q17.7

Q36.0 -- Q36.7

136 --143

288 -- 295

10.4.3 Analog Input addressing

 1)PR14,18,24 Series

 CPU: AI1~AI6 → AIW0~AIW10

 EXT1: AI1~AI4 → AIW20~AIW26

 .

 EXT16: AI1~AI4 → AIW170~AIW176

 Calculation formula:

 AI Start Address=AIW（Extension Address ×10+10）

 2)SR12,PR12N,18N Series

 CPU: AI1~AI8 → AIW0~AIW14

 EXT1: AI1~AI4 → AIW20~AIW26

 EXT2: AI1~AI4 → AIW36~AIW42

 EXT3: AI1~AI4 → AIW52~AIW58

 228

 EXT4: AI1~AI4 → AIW68~AIW74

 EXT5: AI1~AI4 → AIW84~AIW90

 EXT6: AI1~AI4 → AIW100~AIW106

 EXT7: AI1~AI4 → AIW116~AIW122

 EXT8: AI1~AI4 → AIW132~AIW138

 EXT9: AI1~AI4 → AIW148~AIW154

 EXT10: AI1~AI4 → AIW164~AIW170

 EXT11: AI1~AI4 → AIW180~AIW186

 EXT12: AI1~AI4 → AIW196~AIW202

 EXT13: AI1~AI4 → AIW212~AIW218

 EXT14: AI1~AI4 → AIW228~AIW234

 EXT15: AI1~AI4 → AIW244~AIW250

 EXT16: AI1~AI4 → AIW260~AIW266

*SR-12 supports 3 expansion modules

 3)PR26N,23N Series

 CPU: AI1~AI8 → AIW0~AIW14

 AID~AIG → AIW24~AIW30

 EXT1: AI1~AI4 → AIW32~AIW38

 EXT2: AI1~AI4 → AIW48~AIW54

 EXT3: AI1~AI4 → AIW64~AIW70

 EXT4: AI1~AI4 → AIW80~AIW86

 EXT5: AI1~AI4 → AIW96~AIW102

 EXT6: AI1~AI4 → AIW112~AIW118

 EXT7: AI1~AI4 → AIW128~AIW134

 EXT8: AI1~AI4 → AIW144~AIW150

 EXT9: AI1~AI4 → AIW160~AIW166

 EXT10: AI1~AI4 → AIW176~AIW182

 EXT11: AI1~AI4 → AIW192~AIW198

 EXT12: AI1~AI4 → AIW208~AIW214

 EXT13: AI1~AI4 → AIW224~AIW230

 EXT14: AI1~AI4 → AIW240~AIW246

 EXT15: AI1~AI4 → AIW256~AIW262

 EXT16: AI1~AI4 → AIW272~AIW278

10.4.4 Analog Output addressing

 1)PR14,18,24 Series

 PR24CPU: AQ1 → AQW0

 229

 EXT1: AQ1,AQ2 → AQW20,AQW22

 .

 EXT16: AQ1,AQ2 → AQW170,AQW172

 Calculation formula:

 AQ Start Address=AQW（Extension Address ×10+10）

 2)SR12,PR12N,18N,26N,23N Series

 EXT1: AQ1,AQ2 → AQW4,AQW6

 EXT2: AQ1,AQ2 → AQW8,AQW10

 .

 EXT16: AQ1,AQ2 → AQW64,AQW66

 Calculation formula:

 AQ Start Address=AQW（Extension Address ×4）
*SR-12 supports 3 expansion modules

 230

10.5 Set extension module address with a DIP switch

The address of extension module = The value of DIP switch + 1

The default address of PR/SR-E expansions is 1 and the dip switches are set as below

(means the switch position):

 231

10.6 Set the analog sensor type for AI and AQ on xLadder

10.6.1 AI: Set to voltage, current, PT100, PT1000 mode

Some analog inputs can work in voltage or current, PT100 or PT1000 mode after being set in

xLadder. For example, I7~I8 of PR-18DC-DAI-R-N, ID~IG of PR-26DC-DAI-RT-N, PR-E-PT100/PT1000

inputs, PR-E-AI-VI inputs, etc.

Open xLadder's 'System Block', follow the steps below:

‘CPU/External’

In ‘CPU/External’, select the CPU or the expansion module with the corresponding station

number.

After selecting the CPU or the expansion module of the corresponding station number, you can

 232

select the working mode of the corresponding analog input channel.

After setting, click the 'OK' button. Then download these settings to the PLC with the program,

and the new settings will take effect after the PLC restarts.

10.6.2 AQ: Set to voltage or current mode

For models such as PR-E-AQ-VI and PR-26DC-DAI-RA-N, their AQ can be set to output voltage

signals (0~10V) or current signals (0/4~20mA.)

(1) Configure the parameters in ‘Communication’ so that xLadder can communicate with PLC.

xLadder can connect to PLC via serial port or Ethernet.

 233

(2) Use the ‘Set AQ Parameter’ menu.

(3) Get or set the AQ mode

After successful setting, it will take effect immediately.

 234

10.7 Additional instructions

10.7.1 LCD related instructions

LCD_KEY

LCD_KEY binds LCD keys and PLC variables.

⚫ EN：Enable

⚫ MODIFY：Modifies the corresponding variables.

⚫ ENTER：Confirms the corresponding variables.

⚫ UP：The corresponding variable of UP key.

⚫ DOWN: The corresponding variable of DOWN key.

⚫ LEFT：The corresponding variable of LEFT key.

⚫ RIGHT: The corresponding variable of RIGHT key.

LCD_PAGE

LCD_PAGE instruction binds the LCD display page.

⚫ EN: Enable

⚫ MASK：The current page group mask, generally 1.

⚫ INDX：Currently displayed page number. You can modify

the page number, the LCD will display the page.

Supplementary explanation: MASK input is a byte. Take VB0 as an example:

VB0

7 6 5 4 3 2 1 0

When 0 bit is equal to 1, LCD will display 0 group.

When 1 bit is equal to 1, LCD will display 1 group.

When 2 bit is equal to 1, LCD will display 2 group.

 .

 .

 .

When 7 bit is equal to 1, LCD will display 7 group.

 235

LCD_EDIT

LCD_EDIT: Binds the PLC variable to the edit state of the LCD.

⚫ EN：Enable

⚫ UNIT：Edit the number of objects in the page

⚫ AUTO：Whether uses LCD keys to edit.

⚫ DEPTH：The current edit depth of edit object.

⚫ LOOP：LOOP edit.

⚫ FLASH：The edit object is flashing or not.

⚫ V：The current value of edit object.

⚫ VMIN：The minimum value of edit object.

⚫ VMAX：The maximum value of edit object.

For example：

You have to edit display pages in LCD software.

Display page 1:

Display page 2:

Display page 3:

 236

Display page 4:

Grouping of display pages in display page property:

Display page 1：Display page 1 is divided into 0 group and 1 group.

Display page 2：Display page 2 is divided into 0 group and 1 group.

 237

Display page 3：Display page 3 is divided into 0 group.

Display page 4：Display page 4 is divided into 0 group.

PLC program:

 238

Analysis:

In network 0, the program binds LCD keys and PLC variables.

PLC has ten function keys. Each function key corresponds to a PLC variable.

F1 corresponds to SM191.0

F2 corresponds to SM191.1

F3 corresponds to SM191.2

F4 corresponds to SM191.3

ESC corresponds to SM190.0

OK corresponds to SM190.1

UP corresponds to SM190.2

DOWN corresponds to SM190.3

LEFT corresponds to SM190.4

RIGHT corresponds to SM190.5

NETWORK 0:

MODIFY is ESC function key，corresponds to SM190.0

The functions of function keys:

You can customize F1~F4.

ESC is used for modifying values and exiting edit.

OK is used for confirming modified values.

 239

UP and DOWN function keys can toggle display page. They can also increase or

decrease values.

LEFT and RIGHT function keys can be used for toggling edit objects.

The function of NETWORK1 is binding PLC variables and LCD pages.

Operation result:

The display page 1 of the 0 group is displayed by default. The value of VB200 is 1.0 bit

is equal to 1, so LCD displays 0 group. The value of VB201 is 0, which means the first

display page. The first display page is displaying page 1.

You can use the program to specify the display group and the display page.

For example:

The LCD will display group 1 and display page2.

If you use LCD function keys to toggle the display pages, the value of VB201 will

change.

NETWORK2:

 240

LCD -EDIT instruction binds the PLC variables and LCD edit states.

For example:

When you modify the first variable of display page 1:

The instruction will display as follows:

 241

Vb205 = 0 Variable 0,the first variable.

Vb206 = 1 It means that you can use LCD function keys to edit variables.

Vb207 = 1 It means you can modify single digit.Vb207 = 2, you can modify single

digit and tens digit.

Vb208 = 0 No loop

Vb209 = 0 No flicker

Vd210 = 0 The current value of variable is 0

Vd214 = -30000 The minimum value is -30000

Vd218 = 30000 The maximum value is 30000

For example:

Modify the value of variable to 161.

 For example:

 Modify text list

 242

VB205 Variable 1, the second variable.

VB206 It means that you can use LCD function keys to edit variables.

VB207 Edit depth is 1.

VB208 LOOP

VB209 No flicker

VD210 The current value of variable is 1

VD214 The minimum value is 0

VD218 The maximum value is 1

10.7.2 CAN, serial port initialization instructions

UART_Init CAN_Init

CAN_Init instruction is used to initialize the CAN port.

⚫ EN：If the input value is 1, the instruction will initialize the

CAN port.

⚫ PORT：port number，0~1。

⚫ BR：CAN port baud rate

 243

UART_Init

UART_Init instruction is used to initialize the serial port.

⚫ EN：If the input value is equal to 1, the instruction will

initialize the serial port.

⚫ PORT：port number，0 - 2。

⚫ BR：Serial port baud rate.

⚫ DBIT：The number of serial data bit.

⚫ PR：Serial port check bit，0=No parity，1=Odd check，2=Parity

check

⚫ SBIT：Stop bit

⚫ DONE：success=1，fail=0

You can also set these parameters in the programming software.

As shown in the following picture:

 244

10.8 Example of serial port free port communication

Program 1：

 245

Explain：Send data 11 22 33 44 per second through port 1. And record the counts of

sending data.

Program 2:

Explain：Receive data through port 1. The maximum length of the data is 100 bytes.

 246

10.9 Example of CAN free port

 247

Explain：The state of the I0.0 is transmitted through port 0. Receive data VB106

through port0. The state of the first bit of VB106 is the state of Q0.0

 248

10.10 MODBUS communication master program

 Read multiple hold registers and write multiple hold registers

 249

10.11 The example of using PID instruction

The initialization of PID parameters

VD112 gain

VD116 Sampling time

VD120 Integral time

VD124 Differential time

 250

Conversion of Process quantity and set value unit

 251

Call a PID command every 0.3 seconds.

 252

The conversion of output value unit.

10.12 Read / Write Program via Ethernet

First, connect the PLC to the LAN where the PC is located. And belong to the same network

segment. The PC and PLC can be connected via a switch/router, or the two can be connected

directly via a network cable.

When the PLC and PC are connected via a network cable, both the PLC and PC need to be set to

fixed IP addresses in the same LAN.

The following figure shows the IP address of the PC:

 253

10.12.1 PR Ethernet Series

(a) Configure IP parameters without USB CABLE:

(1) Click the button

The following window will pop up:

 254

1) Click the "Net Card Select" button to select the network card on the PC that is connected to

the PLC. Failure to select the correct network card will cause no PLC to be searched later.

2) Click the ‘search’ button and the following figure identifies that the Ethernet PLC has been

searched.

The default IP of the PR-12DC-DA-R-N and other models is 192.168.0.245.

Double-click on the IP in the above figure, the login screen will pop up. Username and Password

are both admin. See below:

 255

When you are done filling out, click the ‘OK’ button. Wait a little while, the IP configuration

window will pop up – ‘Web Server config’.

First, click the ‘Read’ button.

 256

Configuration parameters, the specific method is described below (page 5).

When the configuration is complete, click the ‘Write’ button.

Click ‘OK’.

Click the ‘Close’ button. Prompt you need to restart the PLC and select ‘Yes(Y)’.

The newly configured IP parameters take effect after the PLC restarts.。

(2) Parameter Description:

 257

The parameters in the above figure:

Area A: Set the parameters such as the IP address of the PLC to connect to the network (the Web

Port remains unchanged), meaning the same as the IP address of the configuration computer.

Area B: By default, it stays the same.

Area C：The parameter when the PLC is used as a server (TCP protocol).

 Port: The port of the PLC when doing Server, try not to use 8001.

 Keep Alive: Keep the connection time, the default is 5s.

Max Clients: 0 – 8, When the PLC is used as a server, you can select how many channels are

used by the client at the same time, up to 8.

Timeout: overtime time.

Enable: Checked by default. Must be checked when using TCP protocol.

Area D：The parameter when the PLC is used as a server (UDP protocol).

 Port: The port of the PLC when doing Server, try not to use 8001. Not the same as TCP.

Timeout: overtime time.

 Enable: Checked by default. Must be checked when using UDP protocol.

Area E：Set remote target IP parameters.

Used to configure the IP and port of the servers when the PLC is used as a client. The sum of the

number of servers that can be configured and the number of Max Clients set in Area C is 8. If

Area C's Max Clients is set to 8, channels 1 – 8 in Area E are not available. If Area C's Max Clients

is set to 4, channels 1 – 4 in Area E are available, and channels 5 – 8 are not available.

 Keep Alive: Keep the connection time, the default is 5s.

 Type: TCP or UDP protocol, the default is TCP.

Timeout: overtime time, the default is 0s.

Area F:

 Read: Read network configuration parameters.

 Write: Write network configuration parameters.

Confirm & Reset: After writing the configuration, click this button to complete the

configuration and the PLC will restart.

After the parameters are configured, it is best to test whether there is successful access to

 258

the network. The method is to run CMD.exe (on PC): ping 192.168.0.172

(3) Software reads/writes programs over the network:

The PLC in xLadder is used as the server by default, so the IP and Port of the PLC need to be

filled in the above figure.

After filling in, click the ‘OK’ button.

(b)Configure IP parameters using USB CABLE:

(1) Configure the parameters in ‘Communication’ so that xLadder can communicate with PLC.

Use the "PLC - Config - Web Server Config" menu to open the configuration window.

 259

xLadder software automatically reads the current configuration (or click the ‘Read’ button),

as shown below:

After modifying the parameters, click the "Write" button to write the parameters to the PLC.

Then click the "Reset PLC" button to restart the PLC. The modified parameters will take effect

after the PLC restarts.

 260

xLadder can communicate with PLC via Ethernet.

10.12.2 SR-12 Series

SR12 PLC supports 2 TCP connections. In the first TCP connection (Socket 1), SR12 is fixedly

used as the server.

In the second TCP connection (Socket 2), SR12 can be used as a server or client. The detailed

operation steps are as follows.

You can use the RS485 channel of SR-RS485. You can also do the following via Ethernet

channel. The following recommendations need to be followed:

The default IP of SR-12 is 192.168.0.245, server port: 8008. The PC is set to a fixed IP address,

which is in the same network segment as the PLC IP address. The PC and PLC can be

connected via a switch/router or directly via a network cable.

(1) Open the SR12 Ethernet parameter configuration window (’Web Server config’), There

are 2 ways to open this window, one is using RS485 (SR-RS485), the other is Ethernet.

a) RS485

 261

b) Ethernet

The PC and PLC can be connected via a switch/router, or the two can be connected directly via a

network cable.

When the PLC and PC are connected via a network cable, both the PLC and PC need to be set to

fixed IP addresses in the same LAN.

Then click the 'Network Search' button in the toolbar.

 262

After selecting, double-click.

Enter the username and password, both are admin by default.

(2) The 'Web Server config' window that pops up is as follows:

Explain the main parameters in the above figure:

Area A:

Set the PLC's IP, Subnet Mask, and Gataway parameters here. If you check ‘Enable’ of the

‘DHCP Server’ option, the above settings will be invalid and they will automatically obtain a

new IP, Subnet Mask, and Gataway from the router.

It should be noted that when using the firmware update package to update the firmware, it

is forbidden to check the "DHCP Server" option, otherwise the update will fail.

Keep the default values for 'Keep Alive' and 'Timeout'.

 263

Area B - Socket 1:

Set the server port of SR12 in the first TCP connection. Here, SR12 can only be used as a

server.

Area C - Socket 2:

SR12 can be selected to be used as server or client through the options here. It should be

noted that the ‘Source Port’ will be used regardless of the mode in which SR12 works, so its

value cannot be the same as the port value in ‘Socket 1’.

When ‘Mode’ is set to ‘Server’, only ‘Source Port’ is used. The value of ‘Source Port’ is the

server port.

When ‘Mode’ is set to ‘client’, ‘Source Port’, ‘Dest Port’, and ‘Dest IP Address’ will be used.

‘Dest Port’ and ‘Dest IP Address’ are the server IP and server port of the other device (Server)

to be connected.

TCP is selected by default for ‘Protocol Type’.

The 4 buttons below:

‘Read’ : Read the Ethernet parameters of the SR12 PLC. Usually when this window is

opened, xladder will read automatically, and it is necessary to ensure that xladder and

SR12 are connected normally.

‘Write’ : After modifying the parameters in this window, you need to click this button to

write the new parameters into the SR12 PLC.

‘Reset PLC’ : After writing the new parameters into SR12, click this button to restart the

PLC. The new parameters will take effect after the restart.

‘Exit’ : Exit this window to complete the Ethernet parameter modification operation.

(3) Read and write SR12 program via Ethernet on xladder It should be noted that the PC

 264

where xladder is installed needs to be in the same LAN as SR12. For example, the IP of PC is

192.168.0.28, and the IP of PLC is 192.168.0.226

Finally, it should be noted that the Ethernet connection of the SR12 PLC is a hardware

connection and is not controlled by software. When the Ethernet parameters of both parties

are successfully configured, as long as they are connected through the network cable and

router, the PLC hardware will automatically connect to both parties. As long as the physical

connection is not disconnected, the TCP connection will not be disconnected.

For example, when two SR12s have been configured the Ethernet parameters and physically

connected, and want to achieve Modbus TCP communication, even if the modbus block in

the client program is not triggered, the TCP connection used between them still exists, and

the third device/software can no longer use this TCP connection. You need to pay attention

to this when using it, which is different from the PR series Ethernet.

 265

10.13 Modbus block (New block for Ethernet series PLC)

1, Modbus RTU

The 4 options selected in the red box in the above figure are serial communication ports, which

support Modbus RTU protocol.

 266

COM port diagram:

2, Modbus TCP

First, connect the PLCs to the LAN where the PC is located. And belong to the same network

segment. Or 2 PLCs are on the same network segment.

1, Configure Ethernet IP parameters on xLadder software.

See chapter 10.12 for details

2, Block parameter settings.

A) This PLC is used as a client, and the block configuration is as follows:

 267

B) This PLC is used as a server, and the block configuration is as follows:

 268

10.14 MQTT (New block for Ethernet series PLC)

10.14.1 Connect to MQTT Server

Description of Function

This function block is used to configure and connect to the MQTT server.

 269

The IP and port information of the MQTT server is no longer obtained from ‘Web Server Config’. Instead,

get from this block, which triggers this block to connect to the server.

Publish and subscribe function blocks also do not configure the parameters of the MQTT server, they are

simplified to have only publish and subscribe features.

Only one Connect to MQTT Server block can be placed in the program.

Connection Description

En You enable/disable the block with the signal at input En (1/0).

Parameter Network Ethernet G

IP Address:

The IP address of the MQTT server.

Domain Name:

The domain Name of MQTT server.

Port:

The port of the MQTT server.

Connection timeout:

Timeout setting for cloud connection in seconds.

PING interval time:

Ping timer setting in seconds. If there is no message to publish before the timer

expires, the PLC will send a ping command to the cloud server to check connection

status.

Enable SSL/TLS:

After checking, select to use SSL encryption mode.

CA Certificate File 1:

When using encryption mode, select the SSL certificate by path.

CA Certificate File 2:

Temporarily not supported.

CA Certificate File 3:

Temporarily not supported.

Client ID:

Click the ‘Create only one ID’ button to generate a unique string of numbers.

Name / Password:

Before you can publish / subscribe a message, you need to configure your cloud server

account and ‘Topics’. Each cloud server may have different configuration procedures.

Check the cloud server instructions on how to do this.

Hide:

Hide the password. You can set a secret password when hiding, and you need this

secret password when you unhide it. You can also modify the content without a secret

password.

You can also choose not to set a secret password when hiding.

Out 1 Digital output.

Shows if the server is connected successfully.

1: Successfully connected to the MQTT server

 270

0: The module is not triggered or is connecting to the server

Out 2 Analog output.

The status code of the connection server.

 2: Connecting to the target server

 3: MQTT PING is sending PING packet

5: Disconnect

 20: Resolving domain name

 21: Domain name resolution successful

 22, 23, 24: Domain name resolution failed

 50: Connection failed

 255: The connection is successful

NOTE:

a), ‘Name’ and ‘Password’ are obtained/set when creating a project on the MQTT server.

b) The SSL certificate is issued by a trusted digital certificate authority CA (e.g. Symantec) after

verifying the identity of the server. It has server authentication and data transfer encryption.

c) Check the 'Clean Session' option to clear the session cache. Checked by default.

 271

10.14.2 Publish with MQTT

Description of Function

After successfully connecting to the MQTT server, activate this function block to publish the

message to a topic in the MQTT server.

Connection Description

En You enable/disable the block with the signal at input En (1/0).

Parameter Network: Ethernet G

Retained:

Typically, if a publisher publishes a message to a topic, when no one subscribes to the topic,

then the message will be discarded (not retained) by the MQTT server.

However, the publisher can tell the MQTT server to keep the last message of the topic by

setting a reserved message flag. When a device subscribed to this topic goes online, the MQTT

server sends the retained information to the subscriber.

You can check this option to implement this ‘information retention’ feature. A powered-down

device can receive the last message of its subscribed topic after powering on.

QoS Level:

QoS 0(no answer) or QoS 1(answer). If you wish to receive a response from the MQTT server,

select ‘QoS 1’.

Publish interval time:

Publish timer setting. If enabled, the xLadder will publish the message to the MQTT server

every x seconds. If disabled, the message will only be sent once.

Publish topic:

Set when creating a new topic project on the MQTT server.

Parameter：

Set the message content.

 272

Out Digital output.

Indicates whether the information was successfully published.

0: Not triggered or failed to publish

1: Successfully publish data

Out 2 Analog output.

Publish status code.

0: Block is not triggered

2: Waiting for the MQTT server to connect

4: Time to time start send the published data to the server and wait for server. Response

(QoS1).

14: Successful response to server response (QoS1)

 273

• Publish Topic: Before you can publish a message, you need to configure your MQTT cloud server

account and include setting up of ‘Topics’ usually under the Themes area on your account. Each MQTT

cloud server may have different configuration procedures for their Topics. Check the MQTT cloud

server instructions on how to do this. There are generally five steps:

1. Create an account on a cloud server.

2. Add a device to your account.

3. Set-up an identity for your account.

4. Create a policy for your account.

5. Create a topic for your account.

Once you have configured the Topic name on the MQTT cloud server you are using, enter it here.

 274

MQTT Publish Status Codes

Code Description

00 Connection Accepted

 Connection Refused: unacceptable

protocol version

 2 Connection Refused: identifier rejected

 Connection Refused: server

unavailable

 Connection Refused: bad username or

password

 Connection Refused: not authorized

2 Wait to connect to the server.

 The PING data packet is being sent.

 Time to time start send the published

data to the server and wait for server

response (QoS1).

 Timeout – Disconnect and retry server

connection.

 MQTT PING success

 Successful response to server

response (QoS1) .

2 Successful connection to the server

and ready to Publish.

Subscribe to plcmqtt_topic/40 on the MQTT client software MQTT.fx.

Set M0.0 to 1.

 275

You will receive one message on the MQTT.fx software:

This indicates that the PLC successfully published information to the MQTT server.

 276

10.14.3 Subscribe with MQTT

Description of Function

You can use this function to allow the xLadder to subscribe to a message on the MQTT cloud

server. Only 8 Subscribe blocks can be placed in one program.

Once you have added it to your program, double-click the block to configure it.

Connection Description

En You enable/disable the block with the signal at input En (1/0).

Parameter Network: Ethernet G

QoS Level:

QoS 0(no answer) or QoS 1(answer). If you wish to receive a response from the cloud server,

select ‘QoS 1’.

Subscribe interval time:

Subscribe timer setting. If enabled, the xLadder will Subscribe to the message from the cloud

server every x seconds. If disabled, the message will only be subscribed to once.

Subscribe topic:

Fill in the topics you want to subscribe to.

However, it should be noted that the topic of the multiple subscribe blocks cannot be the same.

Parameter：

Set the start register to store the received information data.

Out 1 Digital output.

Indicates whether the information was successfully subscribed.

0: Not triggered or did not receive the topic it subscribed to

1: Received a subscription topic

Out 2 Analog output.

Subscribe to the status code.

0: Block is not triggered

1: There are no free subscription channels (maximum 8 subscription blocks).

2: Wait for the MQTT server to connect or wait for the subscription channel to be idle.

6: Sending a subscription request

16: The subscription request is successful, waiting to receive the topic of the

subscription.

26: Received a topic subscribed to by this block

36: Subscription request failed, waiting for the block subscription timeout

8: Unsubscribe

 277

Set M10.0 to 1 on Xladder.

“$aws/things/PLC_MQTT_01/shadow/name/PLC11/update/PLC” are published on the MQTT

client software MQTT.fx.

 278

The value received by VB is ASCII code.

VB6000 specifies the length of the string.

10.15 Memory Read & Memory Write (New block for Ethernet

series PLC)

10.15.1 Memory Write

Description of function

Only when there is a low to high trigger at Trg pin, the Memory Write block will be activated and

the pre-configured record action will be performed, at the same time the output will switch on if

 279

the record action had been done successfully.

1. Filename

Place where you can set the name of the file used to save the registers’ data

Above is an example of the “VW.TXT”

2. Record title

The above range circled in red is just pre-set contents in the “Record title” of the Memory write

block’s property dialogue box.

3. File Write Mode

Two options available:

Option A. Append (This option would be selected if a certain file already exists in the Mini SD card

inserted in PLC).

 280

B. Create (This option should be chosen, if no file existed or the existing file has a different name

from that pre-set in the “filename” in the Mini SD card inserted in PLC.

 If this box has been ticked, the file content will show the time when the data starts to be

recorded.

4. Separator

Such separator shall be required while more than one analogue values would be stored and

displayed for easier observation and convenient analysis.

5. File Size

 Sets the size of the file to be stored.

6. After memory Full

Two options can be selected after the memory is full (it means the relative file has reached its

pre-configured size), one is to over-write and the other is to stop recording.

7. Register params

This section is for register’s parameters setting. The register includes the following choices:

8. Record Index

 281

The new data always overwrites the existing third record in the VW.TXT file.

If the third record does not exist in the VW.TXT file, this block cannot work normally.

10.15.2 Memory Read

Description of function

Only when there is a low to high trigger at Trg pin, the Memory Read block will be activated once

and PLC CPU will read correlative data (bit or short) to set pre-configured register from the file in

the SD card, at the same time the output will switch on if the read action had been done

successfully.

 282

1. Filename

The name of the file which you want to access is stored in the mini-SD card.

Above is an example of the “IO-01.TXT”

2. Record Title

3. Record Index

Here is used to set which line the CPU will access via this Memory Read block

4. Register Params

Here is how to set the parameters of the register, all these registers have a “write” property.

 283

For example,

 284

10.16 GPRS_CONN & GPRS_SEND (New block for Ethernet

series PLC)

10.16.1 GPRS_CONN

Description of Function:

The block can be used to enable/disable the GPRS connection of the CPU.

Configuration of Function

1. Timeout Setting – This is the length of time for the timeout if there is no data transmission during

this period. The GPRS will disconnect automatically.

2. Network Params – There are two options to choose from.

a. PLC System

If this setting is selected, the IP and port number of the server shall be the same as configure in

 285

the menu option… ”SMS…Set GPRS Params”.

b. Customize

This option allows you to select another server.

NOTICE:

1) The configuration of this block has a HIGHER priority than the settings set using the menu

option. If the block is activated, the GRPS connection configured via the menu will be

disconnected automatically and these settings used instead.

2) The data transmission between the CPU and the server is based on standard Modbus/TCP

protocol.

10.16.2 GPRS_SEND

 286

Description of Function

This block cab be used to enable a GPRS connection and then transfer some information to the

network server.

Configuration of Function

1) Timeout – If GPRS server does not respond within the set timeout period, the CPU will attempt

the data transmission up to a maximum of three times after which the GPRS connection will be

automatically disconnected.

2) Network Params – There are two options, see GPRS Connect for further information.

3) If your program has three VW with the following values:

VW0 = 100

VW2 = 1000

VW4= 10000

The CPU will upload the VW0 to VW4 values to the server (Slave ID 1) as follows:

00 01 00 00 00 0D 01 10 00 00 00 03 06 00 64 03 E8 27 10

The request and response are prefixed by six bytes as follows:

byte 0: transaction identifier - copied by server

byte 1: transaction identifier - copied by server

byte 2: protocol identifier = 0

byte 3: protocol identifier = 0

byte 4: length field (upper byte) = 0 (since all messages are smaller than 256)

byte 5: length field (lower byte) = number of bytes following

byte 6: unit identifier (previously ‘slave address’)

 287

byte 7: MODBUS function code

byte 8: Register of the slave start address

byte 9: Register of the slave start address

byte 10: number of registers

byte 11: number of registers

byte 12: data length field (lower byte) = number of bytes following

So, AF1 = 00 64 (DECIMAL 100)

AF2 =03 E8 (DECIMAL 1000)

AF3 = 27 10 (DECIMAL 10000)

The server end(slave1) responds

00 01 00 00 00 06 01 10 00 00 00 03

So, if the "Trg" input remains high, then the output will be high also after the CPU gets the above,

correct response.

 288

10.17 SMS_IN & SMS_OUT (New block for Ethernet series

PLC)

Example:

 289

10.17.1 SMS_IN

Description of Function

They are used in a similar way to other digital input blocks. But they enable the switching of their

state via a SMS message sent to the CPU from a phone.

Users can send a pre-set message to the CPU to change the state of the inputs, from “0/OFF” to

“1/ON” or vice versa. The ability to define other commands is also provided such as “Switch

Pump On”, “Close Drain Valve”, etc.

Configuration of Function

 290

1. Receive SMS command characters and store them in 8 VBs starting from VB1.

 Max count - You can set a certain data length to receive SMS command characters.

2. Phonebook – Clicking this button will display the phonebook and allow editing of it.

3. Telephone Receiver Configuration

In this section you can choose up to a maximum of five contacts from the phonebook for which

this block will accept instructions for changing state.

4. Telephone Identification – If this box is ticked, then only SMS received from those configure in

the Telephone section will be acted upon.

 291

Format of ASCII Constant STRING Data Type:

A string is a sequence of characters, with each character being stored as a byte. The first byte of

the string defines the length of the string, which is the number of characters. If the constant

string is entered directly in the program editor or data block, then the string must begin and end

with double quote characters ("string constant").

The memory map below shows the format of a STRING data type. The string can have a length of

0 to 254 characters. The maximum length for a string is 255 bytes (254 characters plus the length

byte).

You need to convert the received SMS characters into a string, as shown in the following

example:

 292

10.17.2 SMS_OUT

Description of Function

Each one can send a SMS message or Call (without sound) to all contacts configured in the block.

This block is only triggered when there is a LOW to HIGH trigger.

The output pin of this block will only become high once ALL messages have been successfully

sent.

NOTICE:

 1. At least ONE number MUST be configured.

 2. Only use standard ASCII characters in the SMS.

 3. Any ‘special’ characters will cause an error.

Two configuration methods are provided, as shown below:

1). Ladder Style

 293

1. There are two options: Ladder Style and FBD Style.

2. Message Format-TEXT and PDU (UCS2) two options.

3. The string that the PLC will send.

4. Phonebook – Clicking this button will display the phonebook and allow editing of it.

5. Telephone Receiver Configuration

In this section you can choose up to a maximum of five contacts from the phonebook for which

this block will accept instructions for changing state.

2) FBD Style

A) Message Format

a. Text – Support for ASCII characters

b. PDU – Support for foreign language characters

 294

B) Parameter format

The message for parameters window should appear:

(1) Select the parameter insertion point.

(2) Enter the parameters to be inserted.

(3) Click the "Insert" button.

(4) Click ‘OK’ to complete the parameter setting.

 295

10.18 EMAIL_POST (New block for Ethernet series PLC)

10.18.1 Set email params

• SMTP: - Enter the IP address of the SMTP Server you are using

• Port: - Enter the port number of the SMTP Server you are using

• User: - Enter the username for SMTP Server email account authentication

• Password: - Enter the password for the SMTP Server email account authentication

• Sender Name: - Enter a name that the receiver will recognise such as Tank Farm Monitor

• Sender Email: - Enter an email address for the PLC

Note that the string cannot contain spaces and some unusual special characters.

 296

Click the Write button to save the settings to the PLC.

With the settings correctly applied, your PLC is now able to send emails using the EMAIL_POST

block within your xLadder program.

10.18.2 EMAIL_POST

When the EN pin has been activated, the CPU will email the address listed in the

pre-set receivers:

1). Ladder Style

1. Send Message To – Configure up to a maximum of 3 numbers who are to receive the email.

Note that the email name string cannot contain spaces and some unusual special characters.

2. Caption – Email caption。Note that it cannot contain spaces and some unusual special

characters.

3. The string that the PLC will send.

 297

2) FBD Style

A) Message Format

B) Parameter format

 298

(1) Select the parameter insertion point.

(2) Enter the parameters to be inserted.

(3) Click the "Insert" button.

(4) Click ‘OK’ to complete the parameter setting.

10.19 Bacnet Protocol

NOTE:

PR Ethernet PLC with firmware version number >=V1.57 supports BACnet. Firmware

version >=2.05, 250 BV and 250 AV can be used. 4G and 4GWIFI models currently do not support

BACnet.

1. Firmware version requirements, as shown below:

2. Set PLC BACnet MSTP / BACnet IP

Open the BACnet configuration window, as shown in the figure below:

 299

Divided into 4 pages: ‘Device Information’, 'Comm', 'Object(BV)' and 'Object(AV)', the following

four pages are introduced respectively.

‘Device Information’ page

On this page, you can fill in relevant characters in the ‘Description’, ‘Location’, ‘My Object Name’

directories.

‘Description’ is limited to 50 characters.

‘Location’ is limited to 12 characters.

‘My Object Name’ is limited to 32 characters.

‘Comm’ page

(1) Bacnet MSTP

 300

‘Protocol’

Select BACnet protocol, there are 2 options: 'Bacnet MSTP' for RS485 communication and 'Bacnet

IP' for Ethernet communication. Here select 'Bacnet MSTP'.

‘Time out’

A value from 1 -- 30 (Second) can be set.

‘Device number’

A value from 1 to 41943303 can be set. It has the same function as the device name and is used

to identify the device in the network. Be careful not to repeat the device number.

‘Channel’

Select the RS485 channel supported by the PLC. The number of RS485 channels supported by

different models is also different. The distribution of com ports on the PLC is shown in the figure

below, taking PR-26DC-DAI-RT-N as an example:

 301

‘BPS’

Set the baud rate for RS485 communication. Different coms have different baud rate options. The

default baud rate of PLC is 9600.

The method to set the baud rate of COM0, COM1, COM2, and COM3 on xLadder is as follows:

‘Parity’

There are three options: None, Odd, and Even, and the PLC defaults to None.

‘PLC BACNET MAC’

It is necessary to ensure that the MAC of each device is unique, and a value from 0 to 127 can be

set.

‘BACNET MAC MAX’

The default value is 127, which sets the maximum mac value of BACnet devices in the network.

 302

The input range is 0 --127. Set the appropriate value according to the requirement.

(2) Bacnet IP

‘Protocol’

Select BACnet protocol, there are 2 options: 'Bacnet MSTP' for RS485 communication and 'Bacnet

IP' for Ethernet communication. Here select 'Bacnet IP'.

‘Time out’

A value from 1 -- 30 (Second) can be set.

‘Device number’

A value from 1 to 41943303 can be set. It has the same function as the device name and is used

to identify the device in the network. Be careful not to repeat the device number.

‘Port’

The default is 47808.

‘APDU Timeout’

A value from 1 -- 100s can be set, and the default value is 1.

‘Object(BV)’ page

 303

Delete BV

Check the checkbox in front of the BV that needs to be deleted (multiple selections are allowed),

and then click the ‘Delete’ button above.

Add BV

Click the ‘Add’ button above.

Count: Set the number of BV to add. Note that the total number of BV will not exceed 250. For

example, if some BV already exists, even if 250 is filled in here, the number of newly added BV

will not be 250, but 250 minus the existing number.

Register: You can choose I, Q, M, S, SM, V or empty. With the 'Count' above, multiple BV of the

same register can be added at one time.

First select 'Binary Value, 0' in the list on the left, set the name of the object on the right, and

assign a register to it. 'Name' only allows up to 8 commonly used characters.

‘Object(AV)’ page

 304

Delete AV

Check the checkbox in front of the AV that needs to be deleted (multiple selections are allowed),

and then click the ‘Delete’ button above.

Add AV

Click the ‘Add’ button above.

Count: Set the number of AV to add. Note that the total number of AV will not exceed 250. For

example, if some AV already exists, even if 250 is filled in here, the number of newly added AV

will not be 250, but 250 minus the existing number.

Register: You can choose IW, QW, MW, SW, SMW, VW or empty. With the 'Count' above, multiple

AV of the same register can be added at one time.

‘Register data type’

 305

The byte order when providing the value in register, you can choose 'HI-LO' and 'LO-HI' modes.

‘DWORD data type’

The byte order of DWORD data, you can choose 'HI-LO' and 'LO-HI' modes.

‘Display type’

Select the data format when displaying values, only support 'FLOAT'.

After configuring all the parameters, click the 'OK' button in the lower right corner, as shown in

the figure below. Then download the BACnet settings to the PLC along with the xLadder program,

and the settings will take effect after the PLC restarts.

For how to use the BACnet protocol of RIEVRECH HMI, please refer to the document on the

website – ‘Rievtech PLC BACnet MSTP BACnet IP parameter configuration method and usage

examples-V2.pdf’, download address: https://www.rievtech.com/download.html

10.20 Libraries files function

The created subroutine can be exported into a library file.

(1) Select the subroutine and then use the ‘Export to Library’ menu to export the subroutine.

 306

Select the storage path for the library file, name the library file, and then click the ‘Save’ button.

(2) Add library files to xLadder.

Copy the library file to the xLadder default library file storage path. The path is "C:\Program Files

(x86)\RIEVTECH\xLadder\xLadder\Libraries".

Select the 'Library' directory and right-click the mouse to pop up the right-click menu. Select and

use the 'Update' menu.

At this time, the added library files will appear in the 'Library' directory.

 307

Double-click to add it to the program.

10.21 Offline simulation

1. xLadder creates ladder program, HmiEditor creates LCD panel program.

 308

2. Generate a bin file on the HmiEditor software.

A bin file will be generated under the selected path, as shown in the figure below:

3. Perform simulation operations on xLadder software.

Click the 'Simulate' button in the toolbar to pop up the following dialog box, check 'Download

LCD Binary', and then select the HmiEditor software to generate the bin file.

In addition, it should be noted that this step is also performed when downloading the xladder

program to the PLC. The bin file of the LCD panel can be downloaded to the PLC together. When

'Download LCD Binary' is not checked, the bin file of the LCD panel will not be downloaded.

 309

Then click the ‘OK’ button in the picture above.

You can also choose not to download LCD Binary.

4. The xLadder software enters the simulation state, as shown below:

You can click on I1 on the picture, I0.0 in the program will change to ‘1’, and Q0.0 will also change

to ‘1’, as shown below:

 310

5. The two tool buttons in the figure below can pause the simulation and continue the simulation.

Click the 'Simulate' button in the toolbar again to exit the simulation.

10.22 C language subroutine

NOTE:

Supports standard C language and its library functions (need to add header files).

(1) Supported models and firmware versions

Model list:

PR-12AC-R-N

PR-12DC-DA-R-N

PR-18AC-R-N

PR-18DC-DAI-R-N

PR-18DC-DAI-TN-N

PR-26AC-R-N

PR-26DC-DAI-RA-N

PR-26DC-DAI-RT-WIFI

PR-26DC-DAI-RT-N

PR-23DC-PTDAI-RT-N

 311

Firmware version requirements:

The firmware version of the above models needs to be greater than or equal to V2.07.

(2) Instructions for use

a) Special function description

PLC variable reading function

Function Description

GetU8(R, O) Get 8-bit unsigned data

GetU16(R, O) Get -bit unsigned data

GetU32(R, O) Get 2-bit unsigned data

GetS8(R, O) Get 8-bit signed data

GetS16(R, O) Get -bit signed data

GetS32(R, O) Get 2-bit signed data

GetF32(R, O) Get 2-bit floating point number

GetT(R, O, B) Get digit data

PLC variable writing function

Function Description

SetU8(R, O, V) Write 8-bit unsigned data

SetU16(R, O, V) Write -bit unsigned data

SetU32(R, O, V) Write 2-bit unsigned data

SetS8(R, O, V) Write 8-bit signed data

SetS16(R, O, V) Write -bit signed data

SetS32(R, O, V) Write 2-bit signed data

SetF32(R, O, V) Write 2-bit floating point number

SetT(R, O, B, V) Write digit data

Function parameter description:

R：PLC variable area，support I、Q、M、S、SM、V、T、C、HC、AI、AQ、L、AC。

O：Offset of PLC variable, unit: byte.

B：Bit offset of PLC variable.

V：The value of the PLC variable.

b E ample description

Create a C language subroutine. The steps are as follows:

 312

Such as the following sample program:

Compile and download to PLC.

 313

C language subroutines do not support offline simulation yet.

(3) Use the 'Find And Replace' menu under 'Edit', or use the 'Ctrl + F' shortcut to open the

Find/Replace window.

For example, after entering VW0 in the ‘Find What’ area, the search results will list all the

locations where VW0 is used, as shown below:

You can also replace the searched content with the content in the 'Replace With' area of this

window.

 314

MODBUS ADDRESS

* Please refer to Chapter ‘Extension module address’ for a detailed list of I, O, AIW, AQW, etc.

 315

For example:

	Introduction
	Valid range of this manual
	Safety Guideline
	Qualified Personnel
	Prescribed Usage
	Warning
	Trademarks
	Copyright Rievtech 2016 all rights reserved
	Disclaim of Liability
	Additional support

	1. What is Rievtech Micro PLC?
	1.1 Overview
	1.2 Highlight feature
	1.3 Some of the things Rievtech Micro PLC can do for you?
	1.4 Rievtech devices：

	2. Hardware introduction
	2.1 Naming Rules of PR Series PLC
	2.2 Hardware model selection
	2.3 Structure & dimension

	3 .Installing/removing Rievtech Micro PLC
	Dimensions
	3.1 DIN rail mounting
	3.2 Wall-mounting
	3.3 wiring Rievtech Micro PLC
	3.4 Connecting the power supply
	3.4.1 Connecting Rievtech micro PLC inputs
	3.4.2 Connecting Outputs
	3.4.3 Communication port instructions:

	4.Quick reference manual
	4.1 Special memory-SM area:
	4.2Interrupt Events:
	4.3 High speed counter：

	XLadder direction for use
	5.The detailed annotation of operation interface
	5.1The main menu
	5.1.1 File
	5.1.2 Edit
	5.1.3 View
	5.1.4 PLC
	5.1.5 Debug
	5.1.6 SMS
	5.1.7 Help

	5.2 Toolbar
	5.3 Instruction tree
	5.3.1 Project
	5.3.2 Data block
	5.3.3 System block
	5.3.4 Program block
	5.3.5 Function symbol
	5.3.6 Variable symbol
	5.3.7 Status chart
	5.3.8 Cross reference
	5.3.9 Communication
	5.3.10 Instructions
	5.3.11 Libraries
	5.3.12 The program editor
	5.3.13 Status chart, information output

	5.4 Programming concepts
	5.4.1 How the program works
	5.4.2 Addressing overview
	5.4.3 How to organize the program

	5.5 How to enter the ladder logic program
	5.5.1 How to build a new project
	5.5.2 Ladder logic element and its working principle
	5.5.3 Network rules for series and parallel in LAD
	5.5.4 How to input commands in LAD
	5.5.5 How to enter the address in LAD
	5.5.6 How to edit program elements in LAD
	5.5.7 How to use find / replace
	5.5.8 How to display errors in LAD in the program editor
	5.5.9 How to compile in LAD
	5.5.10 How to save the project

	5.6 How to set up a communication and download program
	5.6.1 Communication settings
	5.6.2 Download program
	5.6.3 How to correct compilation errors and download errors

	5.7 How to monitor the program
	5.8 PLC operation and options

	6. xLadder instructions descriptions
	6.1 Bit logic
	6.1.1 Normally open and normally closed
	6.1.2 Normally open immediate and normally closed immediate.
	6.1.3 NOT Reverse instruction
	6.1.4 Rising edge and falling edge
	6.1.5 Output
	6.1.6 Output immediate
	6.1.7 Set and reset
	6.1.8 Set immediate and reset immediate
	6.1.9 SR instruction
	6.1.10 RS instruction
	6.1.11 NOP instruction

	6.2 Clock instruction
	6.2.1 Read and set the real time clock

	6.3 Communication
	6.3.1 Get port address
	6.3.2 Set port address

	6.4 Compare
	6.4.1 Byte compare
	6.4.2 Integer comparison
	6.4.3 Double integer comparison
	6.4.4 Real number comparison
	6.4.5 String comparison

	6.5 Convert
	6.5.1 Byte to integer
	6.5.2 Integer to byte
	6.5.3 Integer to double integer
	6.5.4 Integer to string
	6.5.5 Double integer to integer
	6.5.6 Double integer to real number
	6.5.7 Double integer to string
	6.5.8 BCD to integer, integer to BCD conversion
	6.5.9 ROUND
	6.5.10 TRUNC
	6.5.11 Real number to string
	6.5.12 Integer to ASCII code
	6.5.13 Double integer to ASCII code
	6.5.14 Real number to ASCII code
	6.5.15 ATH&HTA
	6.5.16 String to integer
	6.5.17 String to double integer
	6.5.18 String to real number
	6.5.19 DECO
	6.5.20 ENCO
	6.5.21 Seven segment code

	6.6 Counter
	6.6.1 CTU
	6.6.2 CTD
	6.6.3 CTUD

	6.7 Floating point calculation
	6.7.1 ADD-R&SUB-R
	6.7.2 MUL - R&DIV - R
	6.7.3 SQRT
	6.7.4 SIN
	6.7.5 COS
	6.7.6 TAN
	6.7.7 LN
	6.7.8 EXP
	6.7.9 PID

	6.8 Integer operations
	6.8.1 ADD-I&SUB-I
	6.8.2 ADD- DI & SUB- DI
	6.8.3 MUL & DIV
	6.8.4 MUL -I & DIV-I
	6.8.5 MUL -DI & DIV -DI
	6.8.6 INC-B & DEC-B
	6.8.7 INC-W & DEC-W
	6.8.8 INC -DW & DEC -DW

	6.9 Interrupt
	6.9.1 ENI & DISI
	6.9.2 RETI instruction
	6.9.3 ATCH
	6.9.4 DTCH
	6.9.5 Clear interrupt event

	6.10 Logic operation
	6.10.1 INV -B
	6.10.2 INV -W
	6.10.3 INV -DW
	6.10.4 WAND-B、WOR -B、WXOR -B
	6.10.5 WAND-W、WOR -W、WXOR -W
	6.10.6 WAND- DW、WOR -DW、WXOR -DW

	6.11 Move
	6.11.1 Byte move
	6.11.2 Word move
	6.11.3 Double word move
	6.11.4 Real number move
	6.11.5 BLKMOV -B
	6.11.6 BLKMOV -W
	6.11.7 BLKMOV -D
	6.11.8 SWAP
	6.11.9 MOV -BIR
	6.11.10 MOV -BIW

	6.12 Program control
	6.12.1 FOR、NEXT
	6.12.2 Jump to label and label
	6.12.3 Sequence control relay
	6.12.4 Return from subroutine
	6.12.5 Conditional end
	6.12.6 STOP
	6.12.7 Watchdog Reset
	6.12.8 Diagnosis LED

	6.13 Shift cycle
	6.13.1 SHR -B & SHL -B
	6.13.2 SHR -W & SHL -W
	6.13.3 SHR -DW & SHL -DW
	6.13.4 ROR -B & ROL -B
	6.13.5 ROR -W & ROL -W
	6.13.6 ROR -DW & ROL -DW
	6.13.7 SHRB

	6.14 Character string
	6.14.1 String length
	6.14.2 Copy string
	6.14.3 SSTR-CPY
	6.14.4 String catenate
	6.14.5 STR -FIND
	6.14.6 Look for the first character in the string

	6.15 Table
	6.15.1 Last in first out
	6.15.2 FIFO
	6.15.3 Add to table
	6.15.4 Memory fill
	6.15.5 Table Find

	6.16 Timer
	6.16.1 Switch on delay timer
	6.16.2 TONR
	6.16.3 Disconnect delay timer
	6.16.4 Start time interval
	6.16.5 Calculation interval time

	6.17 Pulse train output
	6.17.1 Pulse output
	6.17.2 Pulse width modulation

	6.18 Subroutine
	6.18.1 Using subroutine
	6.18.2 Using parameters to call subroutine
	6.18.3 How to set up a subroutine
	6.18.4 How to call a subroutine

	7.PLC storage area
	7.1 Storage area types and properties
	7.2 Direct and indirect addressing
	7.3 Bit, byte, word and double word access
	7.4 Memory address range
	7.5 Data type
	7.6 Constant

	8.Assignment and function of SM special storage area
	9.xladder communication
	9.1 PLC basic introduction of network communication
	9.2 Rievtech PLC communication
	UFP_XMT
	UFP_QAR
	UMB03
	UMB04
	UMB06
	UMB16

	9.3 Optimize network performance

	10.Additional chapter
	10.1 How to switch PLC mode
	10.2 How to obtain the firmware version number of the PLC
	10.3 Value range of analog quantity:
	10.4 Extension module address
	10.4.1 Digtal Input addressing
	10.4.2 Digtal Output addressing
	10.4.3 Analog Input addressing
	10.4.4 Analog Output addressing

	10.5 Set extension module address with a DIP switch
	10.6 Set the analog sensor type for AI and AQ on xLadder
	10.6.1 AI: Set to voltage, current, PT100, PT1000 mode
	10.6.2 AQ: Set to voltage or current mode

	10.7 Additional instructions
	10.7.1 LCD related instructions
	LCD_KEY
	LCD_PAGE
	LCD_EDIT

	10.7.2 CAN, serial port initialization instructions
	UART_Init CAN_Init
	UART_Init

	10.8 Example of serial port free port communication
	10.9 Example of CAN free port
	10.10 MODBUS communication master program
	10.11 The example of using PID instruction
	10.12 Read / Write Program via Ethernet
	10.12.1 PR Ethernet Series
	10.12.2 SR-12 Series

	10.13 Modbus block (New block for Ethernet series PLC)
	10.14 MQTT (New block for Ethernet series PLC)
	10.14.1 Connect to MQTT Server
	10.14.2 Publish with MQTT
	10.14.3 Subscribe with MQTT

	10.15 Memory Read & Memory Write (New block for Ethernet series PLC)
	10.15.1 Memory Write
	10.15.2 Memory Read

	10.16 GPRS_CONN & GPRS_SEND (New block for Ethernet series PLC)
	10.16.1 GPRS_CONN
	10.16.2 GPRS_SEND

	10.17 SMS_IN & SMS_OUT (New block for Ethernet series PLC)
	10.17.1 SMS_IN
	10.17.2 SMS_OUT

	10.18 EMAIL_POST (New block for Ethernet series PLC)
	10.18.1 Set email params
	10.18.2 EMAIL_POST

	10.19 Bacnet Protocol
	10.20 Libraries files function
	10.21 Offline simulation
	10.22 C language subroutine

	MODBUS ADDRESS

